LEAPs and Bounds—an Energy Demand and Constraint Optimised Model of the Irish Energy System


This paper builds a model of energy demand and supply for Ireland with a focus on evaluating, and providing insights for, energy efficiency policies. The demand-side comprises sectoral sub-models, with a detailed bottom–up approach used for the transport and residential sectors and a top–down approach used for the industry and services sectors. The supply side uses the linear programming optimisation features of the Open Source Energy Modelling System applied to electricity generation to calculate the least-cost solution. This paper presents the first national level model developed within the Long Range Energy Alternatives Planning software to combine detailed end-use analysis on the demand side with a cost-minimising optimisation approach for modelling the electricity generation sector. Through three scenarios over the period 2009–2020, the model examines the aggregate impact on energy demand of a selection of current and proposed energy efficiency policies. In 2020, energy demand in the energy efficiency scenario is 8.6 % lower than the reference scenario and 11.1 % lower in the energy efficiency + scenario.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    LEAP writes an input file for OSeMOSYS, runs it and imports its results back into LEAP. Currently, the LEAP input file only contains the aggregated electricity demand as the main driver for the optimization within OSeMOSYS.

  2. 2.


  3. 3.

    Approximately 7 % of the total residential dwelling stock.

  4. 4.

    The weights based on the GVA split of the two parts of the sub-sector.

  5. 5.

    Approximately 16.6 Mt CO2.

  6. 6.

    The Irish transmission system operator.

  7. 7.


  8. 8.

    12 GB RAM, Intel Xeon 3.0 GHz processor, Microsoft Windows 7 64 bit.

  9. 9.

    New building control legislation will come into force on 1st March 2014.


  1. Barker, T., Bashmakov, I., Bernstein, L., Bogner, J. E., Bosch, P., Dave, R., Davidson, O., Fisher, B. S., Gupta, S., Halsnæs, K., Heij, B., Ribeiro, S. K., Kobayashi, S., Levine, M. D., Martino, D. L., Masera, O., Metz, B., Meyer, L., Nabuurs, G.-J., Najam, A., Nakicenovic, N., Rogner, H.-H., Roy, J., Sathaye, J., Schock, R., Shukla, P., Sims, R. E. H., Smith, P., Tirpak, D. A., Urge-Vorsatz, D. & Zhou, D. (2007). Contribution of Working Group III to the Fourth Assessment of the Intergovernmental Panel on Climate Change. In: Githendu, M. W., (Ed.). IPCC. IPCC.

  2. Barriscale, A. (2009). Provisional 2008 Energy Balance. EPSSU 1–1.

  3. Bautista, S. (2012). A sustainable scenario for Venezuelan power generation sector in 2050 and its costs. Energy Policy, 44(C), 331–340. Elsevier.

    Article  Google Scholar 

  4. Bergin, A., Conefrey, T., Fitzgerald, J. & Kearney, I. (2009). Recovery scenarios for Ireland. ESRI 1–70.

  5. Bergin, A., Conefrey, T., Fitzgerald, J. & Kearney, I. (2010). Recovery scenarios for ireland: An update. ESRI.

  6. Bose, R. K., & Srinivasachary, V. (1997). Policies to reduce energy use and environmental emissions in the transport sector: a case of Delhi city. Energy Policy, 25(14), 1137–1150. Elsevier.

    Article  Google Scholar 

  7. Breslow, M. (2011). Massachusetts Clean Energy and Climate Plan for 2020 (pp. 1–136). Executive Office of Energy and Environmental Affairs.

  8. Browne, J., Nizami, A.-S., Thamsiriroj, T., & Murphy, J. D. (2011). Assessing the cost of biofuel production with increasing penetration of the transport fuel market: A case study of gaseous biomethane in Ireland. Renewable and Sustainable Energy Reviews, 15(9), 4537–4547. Elsevier Ltd.

    Article  Google Scholar 

  9. Cahill, C. J. & Ó Gallachóir, B. P. (2012). Combining physical and economic output data to analyse energy and CO2 emissions trends in industry. Energy Policy, 49, 422–429.

  10. Capros, P., Mantzos, L., Papandreou, N. & Tasios, N. (2008). European Energy and Transport. Directorate-General for Energy and Transport. Brussels: EC.

  11. Clancy, M. & Scheer, J. (2011). Energy Forecasts for Ireland for 2020–2011 Report (pp. 1–74). Energy Modelling Group. SEAI: Dublin.

  12. Clancy, M., Scheer, J., Gallachoir, B. O., Daly, H., Dineen, D., Rogan, F., Cahill, C., OSullivan, R. & Deane, J. P. (2010). Energy Forecasts for Ireland to 2020 (pp. 1–84). Energy Modelling Group. SEAI: Dublin

  13. Clinch, P. & Healy, J. D. (2000). Domestic-energy-efficiency-in-Ireland-correcting-market-failure. Energy Policy 1–8.

  14. Connolly, D., Lund, H., Mathiesen, B. V., & Leahy, M. (2010). A review of computer tools for analysing the integration of renewable energy into various energy systems. Applied Energy, 87(4), 1059–1082. Elsevier Ltd.

    Article  Google Scholar 

  15. CSO (2009a) 2007 Census of industrial production final results. Ireland: Central Statistics Office. http://www.cso.ie/en/media/csoie/releasespublications/documents/industry/2007/cip_2007fin.pdf. Accessed 29 May 2012.

  16. CSO (2009b). Transport Omnibus. cso.ie. Cork: CSO.

  17. Dagher, L., & Ruble, I. (2011). Modeling Lebanon's electricity sector: Alternative scenarios and their implications. Energy 36, 4315–4326.

    Google Scholar 

  18. Daly, H., & Ó Gallachóir, B. P. (2011a). Modelling private car energy demand using a technological car stock model. Transportation Research Part D: Transport and Environment, 16(2), 93–101.

    Article  Google Scholar 

  19. Daly, H. E., & Ó Gallachóir, B. P. (2011b). Modelling future private car energy demand in Ireland. Energy Policy, 39(12), 7815–7824. Elsevier.

    Article  Google Scholar 

  20. Daly, H. E., & Ó Gallachóir, B. P. (2012). Future energy and emissions policy scenarios in Ireland for private car transport. Energy Policy, 51(C), 172–183. Elsevier.

    Article  Google Scholar 

  21. Das, A., Rossetti di Valdalbero, D., & Virdis, M. R. (2007). ACROPOLIS: An example of international collaboration in the field of energy modelling to support greenhouse gases mitigation policies. Energy Policy, 35(2), 763–771.

    Article  Google Scholar 

  22. DCENR (2009). National Energy Efficiency Action Plan. DCENR 1–162.

  23. Deane, J. P., Chiodi, A. & Gargiulo, M. (2012). Soft-linking of a power systems model to an energy systems model. Energy, 42, 303–312.

    Google Scholar 

  24. DECC (2011). Electricity generation cost model—2011 update. London: Department of Energy and Climate Change.

  25. Dineen, D. (2009). Modelling Ireland's aviation energy demand to 2020. Cork: University College Cork.

  26. Dineen, D., & Ó Gallachóir, B. P. (2011). Modelling the impacts of building regulations and a property bubble on residential space and water heating. Energy and Buildings, 43(1), 166–178.

    Article  Google Scholar 

  27. Dineen, D., Rogan, F., Cronin, W. & Ó Gallachóir, B. P. (2011). Modelling residential energy savings due to Ireland's National Retrofit Programme using DEAP and LEAP. In: Proceedings of IEW 2011, Stanford, July 6, 2011.

  28. Edenhofer, O., Knopf, B., Barker, T., Baumstark, L., Bellevrat, E., Chateau, B., et al. (2010). The economics of low stabilization: Model comparison of mitigation strategies and costs. The Energy Journal, 31(1), 11–48.

    Google Scholar 

  29. EirGrid (2008). Generation Adequacy Report 2009–2015. EirGrid Plc 1–80.

  30. EirGridSONI (2011a). All-island generation capacity statement 2012–2021. SONI & EirGrid: Dublin.

  31. EirGridSONI (2011b). Ensuring a secure, reliable and efficient power system report in a changing environment. EirGrid & SONI. Eirgrid: Dublin

  32. EMEEES (2009). EMEEES Project [online]. EMEEES. Available from: http://www.evaluate-energy-savings.eu/emeees/en/home/index.php.

  33. Fisher, B. S. (2007). Issues related to mitigation in the long-term context. Geneva: IPCC.

  34. Gargiulo, M., & Ó Gallachoir, B. (2013). Long-term energy models: Principles, characteristics, focus, and limitations. Wiley Interdisciplinary Reviews: Energy and Environment, 2(2), 158–177.

    Article  Google Scholar 

  35. Heaps, C. (2011). LEAP 2011 User Guide. SEI 1–309.

  36. Hourcade, J. C., Jaccard, M., Bataille, C. & Ghersi, F. (2006). Hybrid modeling: New answers to old challenges. The Energy Journal. http://www.iaee.org/documents/2006se_Jaccard.pdf. Accessed 11 Oct 2012.

  37. Howells, M. I., Alfstad, T., Victor, D. G., Goldstein, G., & Remme, U. (2005). A model of household energy services in a low-income rural African village. Energy Policy, 33(14), 1833–1851.

    Article  Google Scholar 

  38. Howells, M., Rogner, H., Strachan, N., Heaps, C., Huntington, H., Kypreos, S., Hughes, A., Silveira, S., DeCarolis, J. & Bazillian, M. (2011). OSeMOSYS: The open source energy modeling system: An introduction to its ethos, structure and development. Energy Policy, 39, 5850–5870.

  39. Howley, M., Dennehy, E. & Gallachoir, B. O. (2009a). Energy in Ireland 1990–2008. EPSSU 1–92.

  40. Howley, M., Dennehy, E. & Gallachoir, B. O. (2009b). Energy in Transport 2009. EPSSU 1–68.

  41. Howley, M., Dennehy, E. & Gallachoir, B. O. (2010). Energy in Ireland 1990–2009. EPSSU 1–88.

  42. Howley, M., Gallachoir, B. O. & Dennehy, E. (2009c). Energy in Ireland: Key Statistics. EPSSU 1–32.

  43. Huang, Y., Bor, Y.J., & Peng, C.-Y. (2011). The long-term forecast of Taiwan’s energy supply and demand LEAP model application. Energy Policy 39, 6790–6803.

    Google Scholar 

  44. Hull, D., Ó Gallachóir, B. P., & Walker, N. (2009). Development of a modelling framework in response to new European energy-efficiency regulatory obligations: The Irish experience. Energy Policy, 37(12), 5363–5375.

    Article  Google Scholar 

  45. IEA (2008). World energy outlook 2008. Paris: IEA.

  46. IEA (2011). World energy outlook 2011. Paris: IEA.

  47. Johansson, O. & Schipper, L. (1997). Measuring the long-run fuel demand of cars: separate estimations of vehicle stock, mean fuel intensity, and mean annual driving distance. Journal of Transport Economics and Policy, 31, 277–292.

    Google Scholar 

  48. Johnson, J. (2000). The “can you trust it?” Problem of simulation science in the design of socio–technical systems. Complexity, 6(2), 34–40. Wiley Online Library.

    Article  Google Scholar 

  49. Kadian, R., Dahiya, R. P., & Garg, H. P. (2007). Energy-related emissions and mitigation opportunities from the household sector in Delhi. Energy Policy, 35(12), 6195–6211.

    Article  Google Scholar 

  50. Kannan, R. (2011). The development and application of a temporal MARKAL energy system model using flexible time slicing. Applied Energy, 88(6), 2261–2272. Elsevier Ltd.

    Article  Google Scholar 

  51. Laitner, J. A. S. (2006). Improving the contribution of economic models in evaluating energy and climate change mitigation policies. http://www.aceee.org/files/pdf/conferences/workshop/modeling/jslaceee.pdf. Accessed 7 Oct 2012.

  52. Laitner, J. A. S., DeCanio, S. J., Koomey, J. G. & Sanstad, A. H. (2002). Room for improvement: Increasing the value of energy modeling for policy analysis. In: Proceedings of aceee, June 27, 2002, pp. 1–12.

  53. Lee, C.-C., & Chiu, Y.-B. (2013). Modeling OECD energy demand: An international panel smooth transition error-correction model. Energy Policy, 25, 372–383.

    Google Scholar 

  54. Loulou, R., & Labriet, M. (2007). ETSAP-TIAM: the TIMES integrated assessment model Part I: Model structure. Computational Management Science, 5(1–2), 7–40.

    MathSciNet  Google Scholar 

  55. Loulou, R., Goldstein, G. & Noble, K. (2004). Documentation for the MARKAL Family of Models. Paris: IEA-ETSAP.

  56. Mäkelä, K., & Auvinen, H. (2007). Traffic Emissions - Unit emissions of vehicles in Finland. Finland: VVT.

  57. McKinnon, P. A. (2007). CO2 Emissions from Freight Transport in the UK. Commission for Integrated Transport. Climate Change Working Group of the Commission for Integrated Transport.

  58. Messner, S., & Strubegger, M. (1995). User's Guide for MESSAGE. IIASA.

  59. Mundaca, L., Neij, L., Worrell, E. & McNeil, M. (2010). Evaluating energy efficiency policies with energy-economy models. Annual Reviews of Environment and Resources, 5, 305–344.

    Google Scholar 

  60. Munson, D. (2004). Predicting energy futures. The Electricity Journal, 17, 70–79.

    Google Scholar 

  61. Nakata, T. (2004). Energy-economic models and the environment. Progress in Energy and Combustion Science, 30(4), 417–475.

    Article  Google Scholar 

  62. ODYSSEE (2012). Energy Efficiency Indicators in Europe. ODYSSEE. Available from: http://www.odyssee-indicators.org/database/database.php.

  63. O Leary, F., Howley, M. & Gallachoir, B. O. (2008). Energy in the residential sector. EPSSU 1–48.

  64. Ó Gallachóir, B. P., Chiodi, A., Gargiulo, M., Lavigne, D. & Rout, U. K. (2012). Irish TIMES energy systems model. EPA (24).

  65. Ó Gallachóir, B. P., Keane, M., Morrissey, E., & O'Donnell, J. (2007). Using indicators to profile energy consumption and to inform energy policy in a university—A case study in Ireland. Energy and Buildings, 39(8), 913–922.

    Article  Google Scholar 

  66. Pachauri, R. K. (2007). Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. 446 (November) IPCC.

  67. Pina, A., Silva, C., & Ferrão, P. (2011). Modeling hourly electricity dynamics for policy making in long-term scenarios. Energy Policy, 39(9), 4692–4702. Elsevier.

    Article  Google Scholar 

  68. Rogan, F. & Ó Gallachoir, B. (2011). Ex-post evaluation of a residential energy efficiency policy measure using empirical data. ECEEE, pp. 1769–1778.

  69. Rogan, F., Cahill, C. J., & Ó Gallachóir, B. P. (2012). Decomposition analysis of gas consumption in the residential sector in Ireland. Energy Policy, 42, 19–36. Elsevier.

    Article  Google Scholar 

  70. Roinioti, A., Koroneos, C., & Wangensteen, I. (2012). Modeling the Greek energy system Scenarios of clean energy use and their implications. Energy Policy, 50(C), 711–722. Elsevier.

    Article  Google Scholar 

  71. SEAI (2011). Ireland's Energy Balance 2010. Dublin: Sustainable Energy Authority of Ireland.

  72. Shin, H.-C., Park, J.-W., Kim, H.-S., & Shin, E.-S. (2005). Environmental and economic assessment of landfill gas electricity generation in Korea using LEAP model. Energy Policy 33, 1261–1270.

    Google Scholar 

  73. Smyth, B. (2011). Grass biomethane as a renewable transport fuel. In: Murphy, J. (Ed.) Dissertation. UCC.

  74. Suganthi, L. (2011). Energy models for demand forecasting—A review. Renewable and Sustainable Energy Reviews, 16, 1223–1240.

    Google Scholar 

  75. Swan, L., & Ugursal, V. (2009). Modeling of end-use energy consumption in the residential sector: A review of modeling techniques. Renewable and Sustainable Energy Reviews, 13(8), 1819–1835.

    Article  Google Scholar 

  76. Sweeney, J. L. (1983). Energy model comparison: An overview. Stanford: Energy Modeling Forum.

  77. Takase, K., & Suzuki, T. (2011). The Japanese energy sector Current situation, and future paths. Energy Policy 39, 6731–6744.

    Google Scholar 

  78. van Beeck, N. (1999). Classification of energy models. Netherlands: Tilburg University & Eindhoven University of Technology.

  79. Wang, K., Wang, C., Lu, X., & Chen, J. (2007). Scenario analysis on CO2 emissions reduction potential in China's iron and steel industry. Energy Policy, 35(4), 2320–2335.

    Article  Google Scholar 

  80. Wang, Y., Gu, A., & Zhang, A. (2011). Recent development of energy supply and demand in China, and energy sector prospects through 2030. Energy Policy, 39(11), 6745–6759. Elsevier.

    Article  Google Scholar 

  81. Welsch, M., Howells, M., Bazilian, M., DeCarolis, J., Hermann, S. & Rogner, H. H. (2012). Modelling elements of Smart Grids—Enhancing the OSeMOSYS (Open Source Energy Modelling System) code. Energy, 46, 337–350.

    Google Scholar 

  82. Weyant, J. P. (2004). Introduction and overview. Energy Economics, 26(4), 501–515.

    Article  Google Scholar 

  83. Whyte, K., Daly, H. E., & Ó Gallachóir, B. P. (2013). Modelling HGV freight transport energy demand in Ireland and the impacts of the property construction bubble. Energy, 50(C), 245–251. Elsevier Ltd.

    Article  Google Scholar 

Download references


The authors acknowledge funding provided by SEAI to build an early version of the model described in this paper (Clancy et al. 2010). The lead author acknowledges a PhD scholarship from Bord Gais Networks, which also facilitated this work. Thanks to Victoria Clark of the Stockholm Environment Institute (SEI), and Jim Scheer and Shay Kavanagh of SEAI.

Author information



Corresponding author

Correspondence to Fionn Rogan.



Table 7 Fuel prices (source: (IEA 2008; Browne et al. 2011))
Table 8 2011 IEA fuel prices (source: IEA 2011)
Table 9 Electricity generation results in 2020 for reference scenario for (IEA 2008, 2011) fuel prices (units: GWh) (source: authors)
Table 10 Electricity generation results in 2020 for energy efficiency scenario for three electricity dispatches runs (units: TWh) (source: Ireland LEAP model output)
Table 11 Electricity generation results in 2020 for energy efficiency + scenario for three electricity dispatches runs (units: TWh) (source: Ireland LEAP model output)
Table 12 Electricity generation results in 2020 for energy efficiency + scenario for three electricity dispatches runs (units: € million) (source: Ireland LEAP model output)
Table 13 Key macro-economic indicators (source: (Bergin et al. 2010))
Table 14 Numbers of dwellings retrofitted for each year for reference scenario and both retrofit scenarios (source: author's assumptions, see ‘Residential sector’ under ‘Reference scenario’ and ‘Residential sector’ under ‘Energy efficiency scenario’)
Fig. 5

Tree structure for all sectors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rogan, F., Cahill, C.J., Daly, H.E. et al. LEAPs and Bounds—an Energy Demand and Constraint Optimised Model of the Irish Energy System. Energy Efficiency 7, 441–466 (2014). https://doi.org/10.1007/s12053-013-9231-9

Download citation


  • Energy efficiency policies
  • Top–down modelling
  • Bottom–up modelling
  • LEAP
  • Ireland