Advertisement

Energy Efficiency

, Volume 7, Issue 3, pp 441–466 | Cite as

LEAPs and Bounds—an Energy Demand and Constraint Optimised Model of the Irish Energy System

  • Fionn Rogan
  • Caiman J. Cahill
  • Hannah E. Daly
  • Denis Dineen
  • J. P. Deane
  • Charlie Heaps
  • Manuel Welsch
  • Mark Howells
  • Morgan Bazilian
  • Brian P. Ó Gallachóir
Original Article

Abstract

This paper builds a model of energy demand and supply for Ireland with a focus on evaluating, and providing insights for, energy efficiency policies. The demand-side comprises sectoral sub-models, with a detailed bottom–up approach used for the transport and residential sectors and a top–down approach used for the industry and services sectors. The supply side uses the linear programming optimisation features of the Open Source Energy Modelling System applied to electricity generation to calculate the least-cost solution. This paper presents the first national level model developed within the Long Range Energy Alternatives Planning software to combine detailed end-use analysis on the demand side with a cost-minimising optimisation approach for modelling the electricity generation sector. Through three scenarios over the period 2009–2020, the model examines the aggregate impact on energy demand of a selection of current and proposed energy efficiency policies. In 2020, energy demand in the energy efficiency scenario is 8.6 % lower than the reference scenario and 11.1 % lower in the energy efficiency + scenario.

Keywords

Energy efficiency policies Top–down modelling Bottom–up modelling LEAP OSeMOSYS Ireland 

Notes

Acknowledgements

The authors acknowledge funding provided by SEAI to build an early version of the model described in this paper (Clancy et al. 2010). The lead author acknowledges a PhD scholarship from Bord Gais Networks, which also facilitated this work. Thanks to Victoria Clark of the Stockholm Environment Institute (SEI), and Jim Scheer and Shay Kavanagh of SEAI.

References

  1. Barker, T., Bashmakov, I., Bernstein, L., Bogner, J. E., Bosch, P., Dave, R., Davidson, O., Fisher, B. S., Gupta, S., Halsnæs, K., Heij, B., Ribeiro, S. K., Kobayashi, S., Levine, M. D., Martino, D. L., Masera, O., Metz, B., Meyer, L., Nabuurs, G.-J., Najam, A., Nakicenovic, N., Rogner, H.-H., Roy, J., Sathaye, J., Schock, R., Shukla, P., Sims, R. E. H., Smith, P., Tirpak, D. A., Urge-Vorsatz, D. & Zhou, D. (2007). Contribution of Working Group III to the Fourth Assessment of the Intergovernmental Panel on Climate Change. In: Githendu, M. W., (Ed.). IPCC. IPCC.Google Scholar
  2. Barriscale, A. (2009). Provisional 2008 Energy Balance. EPSSU 1–1.Google Scholar
  3. Bautista, S. (2012). A sustainable scenario for Venezuelan power generation sector in 2050 and its costs. Energy Policy, 44(C), 331–340. Elsevier.CrossRefGoogle Scholar
  4. Bergin, A., Conefrey, T., Fitzgerald, J. & Kearney, I. (2009). Recovery scenarios for Ireland. ESRI 1–70.Google Scholar
  5. Bergin, A., Conefrey, T., Fitzgerald, J. & Kearney, I. (2010). Recovery scenarios for ireland: An update. ESRI.Google Scholar
  6. Bose, R. K., & Srinivasachary, V. (1997). Policies to reduce energy use and environmental emissions in the transport sector: a case of Delhi city. Energy Policy, 25(14), 1137–1150. Elsevier.CrossRefGoogle Scholar
  7. Breslow, M. (2011). Massachusetts Clean Energy and Climate Plan for 2020 (pp. 1–136). Executive Office of Energy and Environmental Affairs.Google Scholar
  8. Browne, J., Nizami, A.-S., Thamsiriroj, T., & Murphy, J. D. (2011). Assessing the cost of biofuel production with increasing penetration of the transport fuel market: A case study of gaseous biomethane in Ireland. Renewable and Sustainable Energy Reviews, 15(9), 4537–4547. Elsevier Ltd.CrossRefGoogle Scholar
  9. Cahill, C. J. & Ó Gallachóir, B. P. (2012). Combining physical and economic output data to analyse energy and CO2 emissions trends in industry. Energy Policy, 49, 422–429.Google Scholar
  10. Capros, P., Mantzos, L., Papandreou, N. & Tasios, N. (2008). European Energy and Transport. Directorate-General for Energy and Transport. Brussels: EC.Google Scholar
  11. Clancy, M. & Scheer, J. (2011). Energy Forecasts for Ireland for 2020–2011 Report (pp. 1–74). Energy Modelling Group. SEAI: Dublin.Google Scholar
  12. Clancy, M., Scheer, J., Gallachoir, B. O., Daly, H., Dineen, D., Rogan, F., Cahill, C., OSullivan, R. & Deane, J. P. (2010). Energy Forecasts for Ireland to 2020 (pp. 1–84). Energy Modelling Group. SEAI: DublinGoogle Scholar
  13. Clinch, P. & Healy, J. D. (2000). Domestic-energy-efficiency-in-Ireland-correcting-market-failure. Energy Policy 1–8.Google Scholar
  14. Connolly, D., Lund, H., Mathiesen, B. V., & Leahy, M. (2010). A review of computer tools for analysing the integration of renewable energy into various energy systems. Applied Energy, 87(4), 1059–1082. Elsevier Ltd.CrossRefGoogle Scholar
  15. CSO (2009a) 2007 Census of industrial production final results. Ireland: Central Statistics Office. http://www.cso.ie/en/media/csoie/releasespublications/documents/industry/2007/cip_2007fin.pdf. Accessed 29 May 2012.
  16. CSO (2009b). Transport Omnibus. cso.ie. Cork: CSO.Google Scholar
  17. Dagher, L., & Ruble, I. (2011). Modeling Lebanon's electricity sector: Alternative scenarios and their implications. Energy 36, 4315–4326.Google Scholar
  18. Daly, H., & Ó Gallachóir, B. P. (2011a). Modelling private car energy demand using a technological car stock model. Transportation Research Part D: Transport and Environment, 16(2), 93–101.CrossRefGoogle Scholar
  19. Daly, H. E., & Ó Gallachóir, B. P. (2011b). Modelling future private car energy demand in Ireland. Energy Policy, 39(12), 7815–7824. Elsevier.CrossRefGoogle Scholar
  20. Daly, H. E., & Ó Gallachóir, B. P. (2012). Future energy and emissions policy scenarios in Ireland for private car transport. Energy Policy, 51(C), 172–183. Elsevier.CrossRefGoogle Scholar
  21. Das, A., Rossetti di Valdalbero, D., & Virdis, M. R. (2007). ACROPOLIS: An example of international collaboration in the field of energy modelling to support greenhouse gases mitigation policies. Energy Policy, 35(2), 763–771.CrossRefGoogle Scholar
  22. DCENR (2009). National Energy Efficiency Action Plan. DCENR 1–162.Google Scholar
  23. Deane, J. P., Chiodi, A. & Gargiulo, M. (2012). Soft-linking of a power systems model to an energy systems model. Energy, 42, 303–312.Google Scholar
  24. DECC (2011). Electricity generation cost model—2011 update. London: Department of Energy and Climate Change.Google Scholar
  25. Dineen, D. (2009). Modelling Ireland's aviation energy demand to 2020. Cork: University College Cork.Google Scholar
  26. Dineen, D., & Ó Gallachóir, B. P. (2011). Modelling the impacts of building regulations and a property bubble on residential space and water heating. Energy and Buildings, 43(1), 166–178.CrossRefGoogle Scholar
  27. Dineen, D., Rogan, F., Cronin, W. & Ó Gallachóir, B. P. (2011). Modelling residential energy savings due to Ireland's National Retrofit Programme using DEAP and LEAP. In: Proceedings of IEW 2011, Stanford, July 6, 2011.Google Scholar
  28. Edenhofer, O., Knopf, B., Barker, T., Baumstark, L., Bellevrat, E., Chateau, B., et al. (2010). The economics of low stabilization: Model comparison of mitigation strategies and costs. The Energy Journal, 31(1), 11–48.Google Scholar
  29. EirGrid (2008). Generation Adequacy Report 2009–2015. EirGrid Plc 1–80.Google Scholar
  30. EirGridSONI (2011a). All-island generation capacity statement 2012–2021. SONI & EirGrid: Dublin.Google Scholar
  31. EirGridSONI (2011b). Ensuring a secure, reliable and efficient power system report in a changing environment. EirGrid & SONI. Eirgrid: DublinGoogle Scholar
  32. EMEEES (2009). EMEEES Project [online]. EMEEES. Available from: http://www.evaluate-energy-savings.eu/emeees/en/home/index.php.
  33. Fisher, B. S. (2007). Issues related to mitigation in the long-term context. Geneva: IPCC.Google Scholar
  34. Gargiulo, M., & Ó Gallachoir, B. (2013). Long-term energy models: Principles, characteristics, focus, and limitations. Wiley Interdisciplinary Reviews: Energy and Environment, 2(2), 158–177.CrossRefGoogle Scholar
  35. Heaps, C. (2011). LEAP 2011 User Guide. SEI 1–309.Google Scholar
  36. Hourcade, J. C., Jaccard, M., Bataille, C. & Ghersi, F. (2006). Hybrid modeling: New answers to old challenges. The Energy Journal. http://www.iaee.org/documents/2006se_Jaccard.pdf. Accessed 11 Oct 2012.
  37. Howells, M. I., Alfstad, T., Victor, D. G., Goldstein, G., & Remme, U. (2005). A model of household energy services in a low-income rural African village. Energy Policy, 33(14), 1833–1851.CrossRefGoogle Scholar
  38. Howells, M., Rogner, H., Strachan, N., Heaps, C., Huntington, H., Kypreos, S., Hughes, A., Silveira, S., DeCarolis, J. & Bazillian, M. (2011). OSeMOSYS: The open source energy modeling system: An introduction to its ethos, structure and development. Energy Policy, 39, 5850–5870.Google Scholar
  39. Howley, M., Dennehy, E. & Gallachoir, B. O. (2009a). Energy in Ireland 1990–2008. EPSSU 1–92.Google Scholar
  40. Howley, M., Dennehy, E. & Gallachoir, B. O. (2009b). Energy in Transport 2009. EPSSU 1–68.Google Scholar
  41. Howley, M., Dennehy, E. & Gallachoir, B. O. (2010). Energy in Ireland 1990–2009. EPSSU 1–88.Google Scholar
  42. Howley, M., Gallachoir, B. O. & Dennehy, E. (2009c). Energy in Ireland: Key Statistics. EPSSU 1–32.Google Scholar
  43. Huang, Y., Bor, Y.J., & Peng, C.-Y. (2011). The long-term forecast of Taiwan’s energy supply and demand LEAP model application. Energy Policy 39, 6790–6803.Google Scholar
  44. Hull, D., Ó Gallachóir, B. P., & Walker, N. (2009). Development of a modelling framework in response to new European energy-efficiency regulatory obligations: The Irish experience. Energy Policy, 37(12), 5363–5375.CrossRefGoogle Scholar
  45. IEA (2008). World energy outlook 2008. Paris: IEA.Google Scholar
  46. IEA (2011). World energy outlook 2011. Paris: IEA.Google Scholar
  47. Johansson, O. & Schipper, L. (1997). Measuring the long-run fuel demand of cars: separate estimations of vehicle stock, mean fuel intensity, and mean annual driving distance. Journal of Transport Economics and Policy, 31, 277–292.Google Scholar
  48. Johnson, J. (2000). The “can you trust it?” Problem of simulation science in the design of socio–technical systems. Complexity, 6(2), 34–40. Wiley Online Library.CrossRefGoogle Scholar
  49. Kadian, R., Dahiya, R. P., & Garg, H. P. (2007). Energy-related emissions and mitigation opportunities from the household sector in Delhi. Energy Policy, 35(12), 6195–6211.CrossRefGoogle Scholar
  50. Kannan, R. (2011). The development and application of a temporal MARKAL energy system model using flexible time slicing. Applied Energy, 88(6), 2261–2272. Elsevier Ltd.CrossRefGoogle Scholar
  51. Laitner, J. A. S. (2006). Improving the contribution of economic models in evaluating energy and climate change mitigation policies. http://www.aceee.org/files/pdf/conferences/workshop/modeling/jslaceee.pdf. Accessed 7 Oct 2012.
  52. Laitner, J. A. S., DeCanio, S. J., Koomey, J. G. & Sanstad, A. H. (2002). Room for improvement: Increasing the value of energy modeling for policy analysis. In: Proceedings of aceee, June 27, 2002, pp. 1–12.Google Scholar
  53. Lee, C.-C., & Chiu, Y.-B. (2013). Modeling OECD energy demand: An international panel smooth transition error-correction model. Energy Policy, 25, 372–383.Google Scholar
  54. Loulou, R., & Labriet, M. (2007). ETSAP-TIAM: the TIMES integrated assessment model Part I: Model structure. Computational Management Science, 5(1–2), 7–40.MathSciNetGoogle Scholar
  55. Loulou, R., Goldstein, G. & Noble, K. (2004). Documentation for the MARKAL Family of Models. Paris: IEA-ETSAP.Google Scholar
  56. Mäkelä, K., & Auvinen, H. (2007). Traffic Emissions - Unit emissions of vehicles in Finland. Finland: VVT.Google Scholar
  57. McKinnon, P. A. (2007). CO2 Emissions from Freight Transport in the UK. Commission for Integrated Transport. Climate Change Working Group of the Commission for Integrated Transport.Google Scholar
  58. Messner, S., & Strubegger, M. (1995). User's Guide for MESSAGE. IIASA.Google Scholar
  59. Mundaca, L., Neij, L., Worrell, E. & McNeil, M. (2010). Evaluating energy efficiency policies with energy-economy models. Annual Reviews of Environment and Resources, 5, 305–344.Google Scholar
  60. Munson, D. (2004). Predicting energy futures. The Electricity Journal, 17, 70–79.Google Scholar
  61. Nakata, T. (2004). Energy-economic models and the environment. Progress in Energy and Combustion Science, 30(4), 417–475.CrossRefGoogle Scholar
  62. ODYSSEE (2012). Energy Efficiency Indicators in Europe. ODYSSEE. Available from: http://www.odyssee-indicators.org/database/database.php.
  63. O Leary, F., Howley, M. & Gallachoir, B. O. (2008). Energy in the residential sector. EPSSU 1–48.Google Scholar
  64. Ó Gallachóir, B. P., Chiodi, A., Gargiulo, M., Lavigne, D. & Rout, U. K. (2012). Irish TIMES energy systems model. EPA (24).Google Scholar
  65. Ó Gallachóir, B. P., Keane, M., Morrissey, E., & O'Donnell, J. (2007). Using indicators to profile energy consumption and to inform energy policy in a university—A case study in Ireland. Energy and Buildings, 39(8), 913–922.CrossRefGoogle Scholar
  66. Pachauri, R. K. (2007). Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. 446 (November) IPCC.Google Scholar
  67. Pina, A., Silva, C., & Ferrão, P. (2011). Modeling hourly electricity dynamics for policy making in long-term scenarios. Energy Policy, 39(9), 4692–4702. Elsevier.CrossRefGoogle Scholar
  68. Rogan, F. & Ó Gallachoir, B. (2011). Ex-post evaluation of a residential energy efficiency policy measure using empirical data. ECEEE, pp. 1769–1778.Google Scholar
  69. Rogan, F., Cahill, C. J., & Ó Gallachóir, B. P. (2012). Decomposition analysis of gas consumption in the residential sector in Ireland. Energy Policy, 42, 19–36. Elsevier.CrossRefGoogle Scholar
  70. Roinioti, A., Koroneos, C., & Wangensteen, I. (2012). Modeling the Greek energy system Scenarios of clean energy use and their implications. Energy Policy, 50(C), 711–722. Elsevier.CrossRefGoogle Scholar
  71. SEAI (2011). Ireland's Energy Balance 2010. Dublin: Sustainable Energy Authority of Ireland.Google Scholar
  72. Shin, H.-C., Park, J.-W., Kim, H.-S., & Shin, E.-S. (2005). Environmental and economic assessment of landfill gas electricity generation in Korea using LEAP model. Energy Policy 33, 1261–1270.Google Scholar
  73. Smyth, B. (2011). Grass biomethane as a renewable transport fuel. In: Murphy, J. (Ed.) Dissertation. UCC.Google Scholar
  74. Suganthi, L. (2011). Energy models for demand forecasting—A review. Renewable and Sustainable Energy Reviews, 16, 1223–1240.Google Scholar
  75. Swan, L., & Ugursal, V. (2009). Modeling of end-use energy consumption in the residential sector: A review of modeling techniques. Renewable and Sustainable Energy Reviews, 13(8), 1819–1835.CrossRefGoogle Scholar
  76. Sweeney, J. L. (1983). Energy model comparison: An overview. Stanford: Energy Modeling Forum.Google Scholar
  77. Takase, K., & Suzuki, T. (2011). The Japanese energy sector Current situation, and future paths. Energy Policy 39, 6731–6744.Google Scholar
  78. van Beeck, N. (1999). Classification of energy models. Netherlands: Tilburg University & Eindhoven University of Technology.Google Scholar
  79. Wang, K., Wang, C., Lu, X., & Chen, J. (2007). Scenario analysis on CO2 emissions reduction potential in China's iron and steel industry. Energy Policy, 35(4), 2320–2335.CrossRefGoogle Scholar
  80. Wang, Y., Gu, A., & Zhang, A. (2011). Recent development of energy supply and demand in China, and energy sector prospects through 2030. Energy Policy, 39(11), 6745–6759. Elsevier.CrossRefGoogle Scholar
  81. Welsch, M., Howells, M., Bazilian, M., DeCarolis, J., Hermann, S. & Rogner, H. H. (2012). Modelling elements of Smart Grids—Enhancing the OSeMOSYS (Open Source Energy Modelling System) code. Energy, 46, 337–350.Google Scholar
  82. Weyant, J. P. (2004). Introduction and overview. Energy Economics, 26(4), 501–515.CrossRefGoogle Scholar
  83. Whyte, K., Daly, H. E., & Ó Gallachóir, B. P. (2013). Modelling HGV freight transport energy demand in Ireland and the impacts of the property construction bubble. Energy, 50(C), 245–251. Elsevier Ltd.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Fionn Rogan
    • 1
    • 2
  • Caiman J. Cahill
    • 3
  • Hannah E. Daly
    • 4
  • Denis Dineen
    • 1
    • 2
  • J. P. Deane
    • 1
    • 2
  • Charlie Heaps
    • 5
  • Manuel Welsch
    • 6
  • Mark Howells
    • 6
  • Morgan Bazilian
    • 7
  • Brian P. Ó Gallachóir
    • 1
    • 2
  1. 1.Energy Policy and Modelling Group, Environmental Research InstituteUniversity College CorkCorkIreland
  2. 2.School of EngineeringUniversity College CorkCorkIreland
  3. 3.Joint Research Centre Institute for Energy and TransportIspraItaly
  4. 4.UCL Energy InstituteLondonUK
  5. 5.Stockholm Environmental Institute (SEI)SomervilleUSA
  6. 6.KTH Royal Institute of TechnologyStockholmSweden
  7. 7.Columbia UniversityNew YorkUSA

Personalised recommendations