Skip to main content
Log in

Experimental evaluation of thermal characteristics of wall mounted radiant cooled environment with ceiling fan

  • Published:
Sādhanā Aims and scope Submit manuscript

Abstract

Worldwide the radiant cooling system is used as an energy-efficient alternative to conventional air conditioning systems. Understanding the heat extraction characteristics of the radiant cooling system is necessary to understand the system’s thermal performance. The radiant cooling system’s heat extraction characteristic differs from conventional air conditioning system. The predominant form of heat transfer is through radiation, that is more than 50% of heat transfer takes place by radiation. In this study, the focus is to evaluate the heat extraction characteristic of the radiant cooling system by varying panel position, area of cooling panel, water mass flow rate, and water set temperature. The ratio of radiative heat flux to total heat flux (qr/qtot) is used to evaluate the system’s thermal characteristics. The study’s outcome indicates that the radiative heat transfer coefficient (hr) varies from 5.7 to 6.03 W/mK throughout the experimental study, indicating that the hr value remains relatively constant. The study shows that at steady state, increase in mass flow rate of water and water set temperature increases the percentage of radiative heat flux to total heat flux (qr/qtot). At steady state, increase in area of radiant cooling panel decreases the ratio of qr/qtot. The radiant cooling panel area restricts the cooling capacity of a radiant cooling system. The cooling capacity can be enhanced for a given area of radiant cooling system by adding fins to the radiant panel or by increasing convective heat transfer. In this study, the cooling capacity of the radiant cooling system is enhanced using a ceiling fan. The outcome shows that when Wall B is active at Tw of 25 °C, there is a 19% increase in the cooling capacity of the radiant cooling system as air velocity in the chamber increases from 0 to 0.95 m/s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Abbreviations

AC:

Air conditioning

A j :

Area of jth surface (m2)

A s :

Surface area of radiant cooling panel (m2)

AUST :

Average unheated surface temperature (°C)

\({c}_{p}\) :

Specific heat (J/kg K)

D :

Diameter of globe temperature sensor (m)

F :

Calculated parameter

\({F}_{s-j}\) :

View factor between radiant surface and jth surface

\({F}_{{\varepsilon }_{s-j}}\) :

Radiation interchange factor

h c :

Convective heat transfer coefficient (W/m2 K)

h r :

Radiative heat transfer coefficient (W/m2 K)

\({\dot{m}}_{w}\) :

Mass flow rate of water (l/h)

PEX:

Cross linked polyethelene

q c :

Convective heat flux density (W/m2)

Q r :

Radiative heat flux (W)

q r :

Radiative heat flux density (W/m2)

q tot :

Total heat flux density (W/m2)

\({q}_{w}\) :

Water cooling capacity (W/m2)

RC :

Radiant cooling

T a :

Air temperature (°C)

T g :

Globe temperature (°C)

T j :

Temperature of jth surface (°C)

T mrt :

Mean radiant temperature (°C)

T op :

Operative temperature (°C)

T s :

Radiant surface temperature (°C)

T w :

Water set temperature (°C)

T w,in :

Inlet water temperature (°C)

T w,out :

Outlet water temperature (°C)

v a :

Air velocity (m/s)

WA :

Radiant panel on Wall A

WB :

Radiant panel on Wall B

WC :

Radiant panel on Wall C

WD :

Radiant panel on Wall D

WAB :

Radiant panel on Wall A and Wall B

WAC :

Radiant panel on Wall A and Wall C

WACD :

Radiant panel on Wall A, Wall C and Wall D

WBC :

Radiant panel on Wall B and Wall C

WBD :

Radiant panel on Wall B and Wall D

WBCD :

Radiant panel on Wall B, Wall C and Wall D

WCD :

Radiant panel on Wall C and Wall D

x, y, z :

Dependent parameter

\(\varepsilon \) :

Emissivity of surface

\({\varepsilon }_{j}\) :

Emissivity of jth surface

\({\varepsilon }_{s}\) :

Emissivity of radiant surface

σ:

Stefan–Boltzmann constant (Wm−2 K−4)

∆T:

Change in temperature (°C)

∆t:

Change in time (h)

r :

Radiant

c :

Convective

j :

J-surface

s :

Radiant surface

a :

Air

tot :

Total

References

  1. Behjat Hojjati 2017 Buildings energy consumption in India is expected to increase faster than in other regions. https://www.eia.gov/todayinenergy/detail.php?id=33252

  2. Klepeis N E, Nelson W C, Ott W R, Robinson J P, Tsang A M, Switzer P, Behar J V, Hern S C and Engelmann W H 2001 The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants. J. Expo. Anal. Environ. Epidemiol. 11: 231–252

    Article  Google Scholar 

  3. Howarth N, Camarasa C, Lane K and Martin A R 2023 Keeping cool in a hotter world is using more energy, making efficiency more important than ever. https://www.iea.org/commentaries/keeping-cool-in-a-hotter-world-is-using-more-energy-making-efficiency-more-important-than-ever

  4. Oxizidis S and Papadopoulos A M 2013 Performance of radiant cooling surfaces with respect to energy consumption and thermal comfort. Energy Build. 57: 199–209

    Article  Google Scholar 

  5. Niu J, Kooi J V D and Ree H V D 1995 Energy saving possibilities with cooled-ceiling systems. Energy Build. 23: 147–158

    Article  Google Scholar 

  6. Imanari T, Omori T and Bogaki K 1999 Thermal comfort and energy consumption of the radiant ceiling panel system—comparison with the conventional all-air system. Energy Build. 30: 167–175

    Article  Google Scholar 

  7. Khatri R, Khare V R and Kumar H 2020 Spatial distribution of air temperature and air flow analysis in radiant cooling system using CFD technique. Energy Rep. 6: 268–275

    Article  Google Scholar 

  8. Memon R A, Chirarattananon S and Vangtook P 2008 Thermal comfort assessment and application of radiant cooling: a case study. Build. Environ. 43: 1185–1196

    Article  Google Scholar 

  9. Miriel J, Serres L and Trombe A 2002 Radiant ceiling panel heating-cooling systems: experimental and simulated study of the performances, thermal comfort and energy consumptions. Appl. Therm. Eng. 22: 1861–1873

    Article  Google Scholar 

  10. Dréau J L E and Heiselberg P 2012 Comparison of the thermal performance of radiative and convective terminals: a conceptual approach. PLEA 2012 Lima Peru-Opportunities, Limits & Needs

  11. Woolley J, Schiavon S, Bauman F, Raftery P and Pantelic J 2018 Side-by-side laboratory comparison of space heat extraction rates and thermal energy use for radiant and all-air systems. Energy Build. 176: 139–150

    Article  Google Scholar 

  12. Andrés-Chicote M, Tejero-González A, Velasco-Gómez E and Rey-Martínez F J 2012 Experimental study on the cooling capacity of a radiant cooled ceiling system. Energy Build. 54: 207–214

    Article  Google Scholar 

  13. Cholewa T, Rosinski M, Spik Z, Dudzinska M R and Siuta-Olcha A 2013 On the heat transfer coefficients between heated/cooled radiant floor and room. Energy Build. 66: 599–606

    Article  Google Scholar 

  14. Karakoyun Y, Acikgoz O, Yumurtacı Z and Dalkilic A S 2020 An experimental investigation on heat transfer characteristics arising over an underfloor cooling system exposed to different radiant heating loads through walls. Appl. Therm. Eng. 164: 1–14

    Article  Google Scholar 

  15. Koca A, Gemici Z, Topacoglu Y, Cetin G, Acet R C and Kanbur B B 2014 Experimental investigation of heat transfer coefficients between hydronic radiant heated wall and room. Energy Build. 82: 211–221

    Article  Google Scholar 

  16. Acikgoz O and Kincay O 2015 Experimental and numerical investigation of the correlation between radiative and convective heat-transfer coefficients at the cooled wall of a real-sized room. Energy Build. 108: 257–266

    Article  Google Scholar 

  17. Biswas N and Manna N K 2017 Enhanced convective heat transfer in lid-driven porous cavity with aspiration. Int. J. Heat Mass Transf. 114: 430–452

    Article  Google Scholar 

  18. Biswas N, Chamkha A J and Manna N K 2020 Energy-saving method of heat transfer enhancement during magneto-thermal convection in typical thermal cavities adopting aspiration. SN Appl. Sci. 2: 1911

    Article  Google Scholar 

  19. Biswas N, Manna N K, Datta A, Mandal D K and Benim A C 2020 Role of aspiration to enhance MHD convection in protruded heater cavity. Progress Comput. Fluid Dyn. 20: 363–378

    Article  MathSciNet  Google Scholar 

  20. Datta A, Biswas N, Manna N K and Mandal D K 2022 Thermal management of nanofluid filled porous cavity utilized for solar heating system. J. Inst. Eng. (India) Ser. C 103: 207–221

    Article  Google Scholar 

  21. Zhang L, Liu X H and Jiang Y 2013 Experimental evaluation of a suspended metal ceiling radiant panel with inclined fins. Energy Build. 62: 522–529

    Article  Google Scholar 

  22. Causone F, Corgnati S P, Filippi M and Olesen B W 2010 Solar radiation and cooling load calculation for radiant systems: definition and evaluation of the Direct Solar Load. Energy Build. 42: 305–314

    Article  Google Scholar 

  23. Larwa B, Cesari S and Bottareli M 2021 Study on thermal performance of a PCM enhanced hydronic radiant floor heating system. Energy 225: 1–13

    Article  Google Scholar 

  24. Zhang X, Li N, Su L, Sun Y and Qian J 2016 Experimental study on the characteristics of non-steady state radiation heat transfer in the room with concrete ceiling radiant cooling panels. Build. Environ. 96: 157–169

    Article  Google Scholar 

  25. Cândido C, de Dear R and Lamberts R 2011 Combined thermal acceptability and air movement assessments in a hot humid climate. Build. Environ. 46: 379–385

    Article  Google Scholar 

  26. Arens E, Xu T, Miura K, Hui Z, Fountain M and Bauman F 1998 A study of occupant cooling by personally controlled air movement. Energy Build. 27: 45–59

    Article  Google Scholar 

  27. Zhai Y, Zhang Y, Zhang H, Pasut W, Arens E and Meng Q 2015 Human comfort and perceived air quality in warm and humid environments with ceiling fans. Build. Environ. 90: 178–185

    Article  Google Scholar 

  28. Pieska H, Ploskic A, Holmberg S and Wang Q 2022 Performance analysis of a geothermal radiant cooling system supported by dehumidification. Energies 15: 1–21

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayashree Arumugam.

Appendix I

Appendix I

 

WA/21

WA/23

WA/25

WA/27

WB/21

WB/23

WB/25

WC/21

WC/23

WC/25

WC/27

WD/21

WD/23

WD/25

\(\dot{{m}_{w}}\) (l/hr)

640

640

660

660

690

695

705

665

670

670

680

690

695

700

Ts(°C)

25.5

26.0

26.9

27.8

25.8

26.5

27.0

25.8

26.9

27.6

28.5

25.3

26.0

27.1

Ta(°C)

21.3

22.7

24.7

27.1

21.0

23.0

24.8

22.3

24.3

25.6

27.6

21.0

22.6

24.7

Top(°C)

25.9

26.5

27.4

28.4

26.5

26.9

27.5

26.4

27.4

28.2

28.9

25.9

26.5

27.6

Tmrt(°C)

26.1

26.6

27.6

28.7

26.6

27.3

27.6

26.5

27.5

28.2

29.1

25.8

26.6

27.7

AUST (°C)

26.6

26.9

27.5

28.3

27.2

27.3

27.6

27.2

27.6

28.5

28.8

26.8

27.0

27.8

qtot (W/m2)

49.9

41.2

25.2

9.6

68.0

42.6

25.9

54.9

41.6

29.1

13.8

50.9

42.5

27.4

qr (W/m2)

30.2

24.8

15.8

5.8

35.5

25.4

16.5

33.2

23.6

19.9

9.7

33.2

25.6

18.3

qc (W/m2)

19.7

16.4

9.4

3.8

32.5

17.3

9.4

21.7

18.0

9.2

4.2

17.8

16.9

9.1

qr/qtot

0.61

0.6.0

0.63

0.60

0.52

0.60

0.64

0.60

0.57

0.68

0.70

0.65

0.60

0.67

qc/qtot

0.39

0.40

0.37

0.40

0.48

0.40

0.36

0.40

0.43

0.32

0.30

0.35

0.40

0.33

Qr(W)

122.4

100.4

64.2

23.4

139.1

99.3

64.5

134.5

95.7

80.6

39.1

161.2

124.4

89.2

hr (W/m2.K)

5.7

5.8

6.0

5.9

5.7

5.8

5.8

5.7

5.7

5.9

6.0

5.7

5.8

5.9

 

WAB/21

WAB/23

WAB/25

WAB/27

WCD/21

WCD/23

WCD/25

WCD/27

WACD/21

WACD/23

WACD/25

WBCD/21

WBCD/23

WBCD/25

\(\dot{{m}_{w}}\) (l/hr)

870

880

910

915

825

895

910

915

950

965

1000

990

1015

535

Ts(°C)

24.2

25.4

26.9

28.2

25.2

26.2

27.6

29.1

24.2

25.3

22.9

24.6

26.2

26.5

Ta(°C)

21.1

22.5

25.2

28.7

21.3

22.8

24.8

27.3

21.1

23.0

21.1

23.1

26.0

25.2

Top(°C)

24.5

25.7

27.4

28.5

25.6

26.6

27.9

29.4

24.5

25.6

23.1

24.7

26.6

26.7

Tmrt(°C)

24.8

26.1

27.6

28.5

25.9

26.7

28.2

29.7

24.7

25.8

23.4

24.9

26.8

27.0

AUST (°C)

25.0

25.9

27.5

28.3

26.5

27.4

28.4

29.8

24.9

25.8

23.0

24.4

26.3

26.7

Qrs(W)

38.4

34.9

22.9

5.9

56

47.2

36.6

26.3

47.5

29.8

24.9

20.5

5.0

23.8

qr (W/m2)

21.9

18.0

14.4

3.6

29.9

25.5

20.4

16.3

21.6

16.1

15.3

9.5

3.2

9.3

qc (W/m2)

16.8

16.9

8.5

2.3

26.1

21.7

16.2

10.0

25.9

13.7

9.6

11.0

1.7

14.5

qtot (W/m2)

0.57

0.52

0.63

0.61

0.53

0.54

0.56

0.62

0.46

0.54

0.61

0.46

0.65

0.39

qr/qtot

0.43

0.48

0.37

0.39

0.47

0.46

0.44

0.38

0.54

0.46

0.39

0.54

0.35

0.61

qc/qtot

174.0

143.1

114.6

28.5

266.2

227.4

182.1

145.4

280.4

208.5

196.2

122.1

41.5

36.5

hr(W/m2.K)

5.7

5.8

5.9

6.0

5.7

5.8

5.9

6.0

5.7

5.8

5.7

5.7

6.0

5.9

 

WB/0.4

WB/0.8

WB/0.95

WD/0.4

WD/0.95

WD/355

WD/553

WAB/432

WAB/679

WBCD/504

WBCD/793

   

\(\dot{{m}_{w}}\) (l/hr)

705

710

665

690

685

355

553

432

679

504

793

   

Ts(°C)

27.1

27.0

26.8

22.6

22.7

26.1

25.9

25.2

25.2

24.2

24.2

   

Ta(°C)

24.7

24.9

24.9

26.0

26.1

22.5

22.9

23.3

22.9

23.3

23.3

   

Top(°C)

27

27.0

26.8

26.5

26.7

26.6

26.2

25.5

25.8

24.6

24.6

   

Tmrt(°C)

27.6

27.9

27.8

26.9

27.4

26.5

26.8

25.7

25.9

24.7

24.8

   

AUST (°C)

27.1

26.9

26.8

26.5

26.6

27.2

27.1

25.8

26.0

24.2

297.6

   

qtot (W/m2)

30.7

36.6

37.9

52.5

75.3

41.3

41.6

32.1

33.1

18.6

18.7

   

qr (W/m2)

13.4

11.9

10.4

22.3

22.0

26.5

26.4

17.2

18.2

7.8

8.5

   

qc (W/m2)

17.2

24.7

27.5

30.2

53.3

14.8

15.2

14.9

14.9

10.7

10.3

   

qr/qtot

0.44

0.32

0.27

0.42

0.29

0.64

0.63

0.54

0.55

0.42

0.45

   

qc/qtot

0.56

0.68

0.73

0.58

0.71

0.36

0.37

0.46

0.45

0.58

0.55

   

Qr(W)

52.6

46.6

40.7

108.2

107.1

128.7

128.1

137.0

145.0

100.4

108.5

   

hr (W/m2.K)

5.6

5.7

5.8

5.8

5.8

5.8

5.8

5.8

5.8

5.7

5.7

   

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arumugam, J., Maiya, M.P. & Shiva Nagendra, S.M. Experimental evaluation of thermal characteristics of wall mounted radiant cooled environment with ceiling fan. Sādhanā 49, 119 (2024). https://doi.org/10.1007/s12046-024-02480-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12046-024-02480-5

Keywords

Navigation