Skip to main content
Log in

Low-profile dual-band monopole antenna with EBG array for LTE, WLAN, Wi-MAX, and ISM band applications

  • Published:
Sādhanā Aims and scope Submit manuscript

Abstract

This paper presents a dual-band printed monopole antenna backed with an electromagnetic band-gap (EBG) array for LTE, WLAN, Wi-MAX, and ISM band applications. The antenna is comprised of a T-shaped monopole, 50 Ω microstrip feed line, and a rectangular-shaped partial ground plane. The printed monopole antenna is supported by a 6 × 6 array of EBG unit cells, with each unit cell composed of square and circular rings, resulting in a wide impedance bandwidth and improved gain. The EBG-backed printed monopole antenna with partial ground plane offers an impedance bandwidth of 57.8% (1.6–2.9 GHz) and a maximum radiation efficiency of 95.4% with a peak gain of 6.9 dB in the first band, and an impedance bandwidth of 53.24% (3.39–5.85 GHz) and a maximum radiation efficiency of 95.2% with a peak gain of 8.7 dB in the second band. The proposed monopole antenna design is miniaturised, has less design complexity, and does not require vias for EBG realisation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Availability of data and materials

Data will be made available on reasonable request.

References

  1. Pan S, Lin M, Xu M, Zhu S, Bian L and Li G 2022 A low-profile programmable beam scanning holographic array antenna without phase shifters. IEEE Internet Things J. 9(11): 8838–8851

    Article  Google Scholar 

  2. Ding G, Anselmi N, Xu W, Li P and Rocca P 2023 Interval-bounded optimal power pattern synthesis of array antenna excitations robust to mutual coupling. IEEE Antennas Wirel. Propag. Lett.. https://doi.org/10.1109/LAWP.2023.3291428

    Article  Google Scholar 

  3. Suntives A and Abhari R 2013 Miniaturization and isolation improvement of a multiple-patch antenna system using electromagnetic bandgap structures. Microw. Opt. Technol. Lett. 55(7): 1609–1612

    Article  Google Scholar 

  4. Huang X, Zhou L, Völkel M, Hagelauer A, Mao J and Weigel R 2018 Design of a novel quarter-mode substrate-integrated waveguide filter with multiple transmission zeros and higher mode suppressions. IEEE Trans. Microw. Theory Tech. 66(12): 5573–5584

    Article  ADS  Google Scholar 

  5. Shaban H F, Elmikaty H A and Shaalan A A 2008 Study the effects of electromagnetic band-gap (EBG) substrate on two patch microstrip antenna. Prog. Electromagn. Res. 10: 55–74

    Article  Google Scholar 

  6. Huang X, Zhang X, Zhou L, Xu J and Mao J 2023 Low-loss self-packaged Ka-band LTCC filter using artificial multimode SIW resonator. IEEE Trans. Circuits Syst. II Express Briefs 70(2): 451–455

    Google Scholar 

  7. Feng Y, Zhang B, Liu Y, Niu Z, Fan Y and Chen X 2022 A D-band manifold triplexer with high isolation utilizing novel waveguide dual-mode filters. IEEE Trans. Terahertz Sci. Technol. 12(6): 678–681

    Article  ADS  Google Scholar 

  8. Chung K L, Tian H, Wang S, Feng B and Lai G 2022 Miniaturization of microwave planar circuits using composite microstrip/coplanar-waveguide transmission lines. Alexandria Eng. J. 61(11): 8933–8942

    Article  Google Scholar 

  9. Yang F and Rahmat-Samii Y 2003 Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications. IEEE Trans. Antennas Propag. 51(10): 2936–2946.

    Article  ADS  Google Scholar 

  10. Pioch S and Laheurte J M 2003 Size reduction of microstrip antennas by means of periodic metallic patterns. Electron. Lett. 39(13): 959–961

    Article  ADS  Google Scholar 

  11. Smyth B P, Barth S and Iyer A K 2016 Dual-band microstrip patch antenna using integrated uniplanar metamaterial-based EBGs. IEEE Trans. Antennas Propag. 64(12): 5046–5053

    Article  ADS  Google Scholar 

  12. Liang J and Yang H Y 2017 Radiation characteristics of a microstrip patch over an electromagnetic bandgap surface. IEEE Trans. Antennas Propag. 55(6): 1691–1697

    Article  MathSciNet  ADS  Google Scholar 

  13. Afzal M U, Esselle K P and Zeb B A 2015 Dielectric phase-correcting structures for electromagnetic band gap resonator antennas. IEEE Trans. Antennas Propag. 63(8): 3390–3399

    Article  MathSciNet  ADS  Google Scholar 

  14. Kim S, Ren Y J, Lee H, Rida A, Nikolaou S and Tentzeris M M 2012 Monopole antenna with inkjet-printed EBG array on paper substrate for wearable applications. IEEE Antennas Wirel. Propag. Lett. 11: 663–666

    Article  ADS  Google Scholar 

  15. Raad H R, Abbosh A I, Al-Rizzo H M and Rucker D G 2012 Flexible and compact AMC based antenna for telemedicine applications. IEEE Trans Antennas Propag. 61(2): 524–531

    Article  ADS  Google Scholar 

  16. Jiang Z H, Brocker D E, Sieber P E and Werner D H 2014 A compact, low-profile metasurface-enabled antenna for wearable medical body-area network devices. IEEE Trans. Antennas Propag. 62(8): 4021–4030

    Article  ADS  Google Scholar 

  17. Mohamadzade B and Afsahi M 2017 Mutual coupling reduction and gain enhancement in patch array antenna using a planar compact electromagnetic bandgap structure. IET Microw. Antennas Propag. 11(12): 1719–1725

    Article  Google Scholar 

  18. Abbasi M A, Nikolaou S S, Antoniades M A, Stevanović M N and Vryonides P 2016 Compact EBG-backed planar monopole for BAN wearable applications. IEEE Trans. Antennas Propag. 65(2): 453–463

    Article  ADS  Google Scholar 

  19. Naderi M, Zarrabi F B, Jafari F S and Ebrahimi S 2018 Fractal EBG structure for shielding and reducing the mutual coupling in microstrip patch antenna array. AEU-Int. J. Electron. Commun. 93: 261–267

    Article  Google Scholar 

  20. Gao G P, Hu B, Wang S F and Yang C 2018 Wearable circular ring slot antenna with EBG structure for wireless body area network. IEEE Antennas Wirel. Propag. Lett. 17(3): 434–437

    Article  ADS  Google Scholar 

  21. Ashyap A Y, Zainal Abidin Z, Dahlan S H, Majid H A and Saleh G 2019 Metamaterial inspired fabric antenna for wearable applications. Int. J. RF Microw. Comput. Aided Eng. 29(3): e21640

    Article  Google Scholar 

  22. Gao G, Zhang R, Yang C, Meng H, Geng W and Hu B 2019 Microstrip monopole antenna with a novel UC-EBG for 2.4 GHz WBAN applications. IET Microw. Antennas Propag. 13(13): 2319–2323

    Article  Google Scholar 

  23. Ashyap A Y, Dahlan S H, Abidin Z Z, Dahri M H, Majid H A and Kamarudin M R et al 2020 Robust and efficient integrated antenna with EBG-DGS enabled wide bandwidth for wearable medical device applications. IEEE Access 8: 56346–56358

    Article  Google Scholar 

  24. Gao G, Wang S, Zhang R, Yang C and Hu B 2020 Flexible EBG-backed PIFA based on conductive textile and PDMS for wearable applications. Microw. Opt. Technol. Lett. 62(4): 1733–1741

    Article  Google Scholar 

  25. Venkata S R and Kumari R 2020 Gain and isolation enhancement of patch antenna using L-slotted mushroom electromagnetic bandgap. Int. J. RF Microw. Comput. Aided Eng. 30(10): e22369

    Article  Google Scholar 

  26. El Atrash M, Abdalla M A and Elhennawy H M 2021 A compact flexible textile artificial magnetic conductor-based wearable monopole antenna for low specific absorption rate wrist applications. Int. J. Microw. Wirel. Technol. 13(2): 119–125

    Article  Google Scholar 

  27. Abdulbari A A, Abdul Rahim S K, Abedi F, Soh P J, Hashim A and Qays R et al 2022 Single-layer planar monopole antenna-based artificial magnetic conductor (AMC). Int. J. Antennas Propag. 2022: 6724175

    Article  Google Scholar 

  28. Darabi M and Mohajeri F 2022 An efficient and compact monopole antenna backed with square loop EBG structure for medical wireless body area network applications. Radio Sci. 57(1): 1–9

    Article  Google Scholar 

  29. Samson Daniel R 2021 Planar SIW cavity-backed antenna loaded with slots for multiband operations. Appl. Phys. A 127(6): 1–9

    Article  Google Scholar 

  30. Alnaiemy Y and Nagy L 2020 Improved antenna gain and efficiency using novel EBG layer. In: 2020 IEEE 15th International Conference of System of Systems Engineering (SoSE), IEEE, pp. 271–276

  31. Caloz C and Itoh T 2005 Electromagnetic metamaterials: transmission line theory and microwave applications. John Wiley & Sons, Hoboken

    Book  Google Scholar 

  32. Gangwar D, Das S and Yadava R L 2017 Gain enhancement of microstrip patch antenna loaded with split ring resonator based relative permeability near zero as superstrate. Wirel. Pers. Commun. 96: 2389–2399

    Article  Google Scholar 

  33. Chakraborty U, Chatterjee S, Chowdhury S K and Sarkar P P 2011 A comact microstrip patch antenna for wireless communication. Prog. Electromagn. Res. C. 18: 211–220

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin Kumar.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babu, N.S., Ansari, A.Q., Kumar, S. et al. Low-profile dual-band monopole antenna with EBG array for LTE, WLAN, Wi-MAX, and ISM band applications. Sādhanā 49, 56 (2024). https://doi.org/10.1007/s12046-023-02416-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12046-023-02416-5

Keywords

Navigation