Skip to main content
Log in

Evaluating earthquake vulnerability of 2023 Kayseri, Türkiye via BWM-ABAC method

  • Published:
Sādhanā Aims and scope Submit manuscript

Abstract

Effective earthquake disaster management requires the most recent and precise vulnerability evaluation. There are a total of 24 faults and 16 fault segments that may affect Kayseri city center and its districts. According to the records, in the historical and instrumental period, more than 30 earthquakes that occurred with a magnitude of 4 and above are concentrated in 8 districts. Ten of these earthquakes occurred in the last 7 years. A framework for evaluating Kayseri’s earthquake vulnerability has been presented using a three-stage process: Determining the criteria through a literature review and consultations with experts, applying the linear Best Worst Method (BWM) to weigh the selected criteria, and evaluating the districts using alternative by alternative comparison (ABAC), respectively. To analyze the earthquake vulnerability of districts, the proposed methodology BWM-ABAC, which is used for the first time in the literature, offers valuable results. The findings showed that the Kocasinan district is the most vulnerable to earthquakes in Kayseri City. A sensitivity analysis was then performed to confirm the robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Comerio M C 2004 Public policy for reducing earthquake risks: a US perspective. Build. Res. Inf. 32(5): 403–413.

    Article  Google Scholar 

  2. Gurbuz C, Aktar M, Eyidogan H, Cisternas A, Haessler H, Barka A and Yoruk A 2000 The seismotectonics of the Marmara region (Turkey): results from a microseismic experiment. Tectonophysics 316(1–2): 1–17

    Article  Google Scholar 

  3. https://www.afad.gov.tr

  4. Şahin Ş 2019 Türkiye’de afet yönetimi ve 2023 hedefleri. Türk Deprem Araştırma Dergisi 1(2): 180–196

    Article  Google Scholar 

  5. Erdogan S 2021 İstanbul Tarihi Yarimada’da Kentsel Ölçekte Deprem Odakli Kentsel Zarar Görebilirlik Değerlendirmesi. (İstanbul Teknik Üniversitesi Master's thesis Lisansüstü Eğitim Enstitüsü)

  6. Dwyer A, Zoppou C, Nielsen O, Day S and Roberts S 2004 Quantifying social vulnerability: a methodology for identifying those at risk to natural hazards

  7. Yücel G 2018 Earthquake and evacuation area assessment for Istanbul Avcılar district. Disaster Sci. Eng. 4(2): 65–79

    Google Scholar 

  8. Balyemez S and Berköz L 2010 Hasar görebilirlik ve kentsel deprem davranışı. İTÜDERGİSİ/a 4(1)

  9. Kundak S 2006 İstanbul'da deprem risk parametrelerinin değerlendirilmesine yönelik bir model önerisi. (Doktora tezi). İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü İstanbul

  10. Rashed T and Weeks J 2003 Assessing vulnerability to earthquake hazards through spatial multicriteria analysis of urban areas. Int. J. Geogr. Inf. Sci. 17(6): 547–576

    Article  Google Scholar 

  11. Diaz-Sarachaga J M and Jato-Espino D 2020 Analysis of vulnerability assessment frameworks and methodologies in urban areas. Natl. Hazards 100(1): 437–457

    Article  Google Scholar 

  12. Wiguna K A, Sarno R and Ariyani N F 2016 Optimization solar farm site selection using multi-criteria decision making fuzzy AHP and PROMETHEE: case study in Bali. In: 2016 International Conference on Information & Communication Technology and Systems (ICTS) (pp. 237-243). IEEE

  13. Deng Y, Chan F T, Wu Y and Wang D 2011 A new linguistic MCDM method based on multiple-criterion data fusion. Exp. Syst. Appl. 38(6): 6985–6993

    Article  Google Scholar 

  14. Shayannejad A and Angerabı B A 2014 Earthquake Vulnerability Assessment in urban areas using MCDM Case study: the central part of 6 district of Tehran Municipality. Int. Rev. Spat. Plann. Sustain. Dev. 2(2): 39–51

    Google Scholar 

  15. Peng Y 2015 Regional earthquake vulnerability assessment using a combination of MCDM methods. Ann. Oper. Res. 234: 95–110

    Article  MathSciNet  MATH  Google Scholar 

  16. Alizadeh M, Ngah I, Hashim M, Pradhan B and Pour A B 2018 A hybrid analytic network process and artificial neural network (ANP-ANN) model for urban earthquake vulnerability assessment. Remote Sens. 10(6): 975

    Article  Google Scholar 

  17. Nyimbili P H, Erden T and Karaman H 2018 Integration of GIS AHP and TOPSIS for earthquake hazard analysis. Natl. Hazards 92: 1523–1546

    Article  Google Scholar 

  18. Yavuz Kumlu K B and Tüdeş Ş 2019 Determination of earthquake-risky areas in Yalova City Center (Marmara region Turkey) using GIS-based multicriteria decision-making techniques (analytical hierarchy process and technique for order preference by similarity to ideal solution). Natl. Hazards 96: 999–1018

    Article  Google Scholar 

  19. Chen N, Chen L, Tang C, Wu Z and Chen A 2019 Disaster risk evaluation using factor analysis: a case study of Chinese regions. Natl. Hazards 99: 321–335

    Article  Google Scholar 

  20. Yariyan P, Zabihi H, Wolf I D, Karami M and Amiriyan S 2020 Earthquake risk assessment using an integrated fuzzy analytic hierarchy process with artificial neural networks based on GIS: a case study of Sanandaj in Iran. Int. J. Disaster Risk Reduct. 50: 101705

    Article  Google Scholar 

  21. Jena R, Pradhan B, Beydoun G, Sofyan H and Affan M 2020 Integrated model for earthquake risk assessment using neural network and analytic hierarchy process: Aceh province Indonesia. Geosci. Front. 11(2): 613–634

    Article  Google Scholar 

  22. Jena R, Pradhan B and Beydoun G 2020 Earthquake vulnerability assessment in Northern Sumatra province by using a multi-criteria decision-making model. Int. J. Disaster Risk Reduct. 46: 101518

    Article  Google Scholar 

  23. Güler E, Selen A and Aladağ Z 2021 Türkiye’de İllerin Deprem Hasar Görebilirlik Sıralamasında Promethee Vıkor Topsıs Yöntemlerinin Başarılarının Değerlendirilmesi. Endüstri Mühendisliği 32(3): 414–437

    Google Scholar 

  24. Jena R, Pradhan B, Beydoun G, Alamri A and Shanableh A 2021 Spatial earthquake vulnerability assessment by using multi-criteria decision making and probabilistic neural network techniques in Odisha India. Geocarto Int. 1-20

  25. Shafapourtehrany M, Yariyan P, Özener H, Pradhan B and Shabani F 2022 Evaluating the application of K-mean clustering in Earthquake vulnerability mapping of Istanbul Turkey. Int. J. Disaster Risk Reduct. 79: 103154

    Article  Google Scholar 

  26. Biswas A, Baranwal G and Tripathi A K 2022 ABAC: alternative by alternative comparison based multi-criteria decision making method. Expert Syst. Appl. 208: 118174

    Article  Google Scholar 

  27. Rezaei J 2015 Best-worst multi-criteria decision-making method. Omega 53: 49–57

    Article  Google Scholar 

  28. Roy P K and Shaw K 2021 An integrated fuzzy model for evaluation and selection of mobile banking (m-banking) applications using new fuzzy-BWM and fuzzy-TOPSIS. Complex Intell. Syst. 1–22

  29. Özmen M and Aydoğan E K 2020 Robust multi-criteria decision making methodology for real life logistics center location problem. Artif. Intell. Rev. 53: 725–751

    Article  Google Scholar 

  30. Aboutorab H, Saberi M, Asadabadi M R, Hussain O and Chang E 2018 ZBWM: The Z-number extension of best worst method and its application for supplier development. Exp. Syst. Appl. 107: 115–125

    Article  Google Scholar 

  31. Rezaei J, van Roekel W S and Tavasszy L 2018 Measuring the relative importance of the logistics performance index indicators using Best Worst Method. Transp. Policy 68: 158–169

    Article  Google Scholar 

  32. Pamucar D, Chatterjee K and Zavadskas E K 2019 Assessment of third-party logistics provider using multi-criteria decision-making approach based on interval rough numbers. Comput. Ind. Eng. 127: 383–407

    Article  Google Scholar 

  33. Qu S, Xu Y, Wu Z, Xu Z, Ji Y, Qu D and Han Y 2021 An interval-valued best–worst method with normal distribution for multi-criteria decision-making. Arab J. Sci. Eng. 46: 1771–1785

    Article  Google Scholar 

  34. Gul M and Ak M F 2020 Assessment of occupational risks from human health and environmental perspectives: a new integrated approach and its application using fuzzy BWM and fuzzy MAIRCA. Stochast. Environ. Res. Risk Assess. 34(8): 1231–1262

    Article  Google Scholar 

  35. Sotoudeh-Anvari A, Sadjadi S, Molana S and Sadi-Nezhad S 2018 A new MCDM-based approach using BWM and SAW for optimal search model. Decision Sci. Lett. 7(4): 395–404

    Article  Google Scholar 

  36. Triantaphyllou E and Sánchez A 1997 A sensitivity analysis approach for some deterministic multi-criteria decision-making methods. Decision Sci. 28(1): 151–194

    Article  Google Scholar 

  37. Li P, Qian H, Wu J and Chen J 2013 Sensitivity analysis of TOPSIS method in water quality assessment: I. Sensitivity to the parameter weights. Environ. Monit. Assess. 185: 2453–2461

    Article  Google Scholar 

  38. Mi X, Tang M, Liao H, Shen W and Lev B 2019 The state-of-the-art survey on integrations and applications of the best worst method in decision making: Why, what what for and what’s next? Omega 87: 205–225

    Article  Google Scholar 

  39. Rezaei J 2016 Best-worst multi-criteria decision-making method: Some properties and a linear model. Omega 64: 126–130

    Article  Google Scholar 

  40. https://www.kayseri.bel.tr

  41. http://www.kayseri.gov.tr/sanayi-gelisimi

  42. Bozkurt E 2001 Neotectonics of Turkey–a synthesis. Geodinamica Acta 14(1–3): 3–30

    Article  Google Scholar 

  43. Kayseri İl Afet Risk Azaltma Planı https://kayseri.afad.gov.tr/kurumlar/kayseri.afad/Egitim/Kayseri_IRAP_Baski.pdf

  44. http://www.koeri.boun.edu.tr/new/

  45. https://www.mta.gov.tr

  46. https://www.usgs.gov/programs/earthquake-hazards/determining-depth-earthquake

  47. Kılıç N C A 2021 An evaluation on the earthquake hazard Of Kayseri Provınce and Its vicinity. ULUSLARARASI ERCİYES BİLİMSEL ARAŞTIRMALAR KONGRESİ, 297-309

  48. Moustafa A and Takewaki I 2012 Characterization of earthquake ground motion of multiple sequences. Earthq. Struct. 3(5): 629–647

    Article  Google Scholar 

  49. Davidson R A and Shah H C 1997 An urban earthquake disaster risk index. Report 121. Blume Earthquake Engineering Center, Standford, USA

  50. Bruneau M, Chang S E, Eguchi R T, Lee G C, O’Rourke T D, Reinhorn A M and Von Winterfeldt D 2003 A framework to quantitatively assess and enhance the seismic resilience of communities. Earthq. Spectra 19(4): 733–752

    Article  Google Scholar 

  51. Birkmann J 2007 Risk and vulnerability indicators at different scales: Applicability, usefulness and policy implications. Environ. Hazards 7(1): 20–31

    Article  Google Scholar 

  52. De Ruiter M C, Ward P J, Daniell J E and Aerts J C 2017 A comparison of flood and earthquake vulnerability assessment indicators. Natl. Hazards Earth Syst. Sci. 17(7): 1231–1251

    Article  Google Scholar 

  53. Triantaphyllou E and Triantaphyllou E 2000 Multi-criteria decision making methods. Springer, Berlin, pp 5–21

    MATH  Google Scholar 

  54. Liu K 2020 Post-earthquake medical evacuation system design based on hierarchical multi-objective optimization model: An earthquake case study. Int. J. Disaster Risk Reduct. 51: 101785

    Article  Google Scholar 

  55. Crowley H, Despotaki V, Rodrigues D, Silva V, Toma-Danila D, Riga E and Gamba P 2020 Exposure model for European seismic risk assessment. Earthq. Spectra 36(1_suppl): 252–273

  56. Bahadori H, Hasheminezhad A and Karimi A 2017 Development of an integrated model for seismic vulnerability assessment of residential buildings: Application to Mahabad City Iran. J. Build. Eng. 12: 118–131

    Article  Google Scholar 

  57. Yavaşoğlu F and Özden Ç V 2017 Coğrafi Bilgi Sistemleri Tabanlı Analitik Hiyerarşi Süreci Kullanılarak Deprem Hasar Riski Analizi: Kadıköy Örneği. TÜBAV Bilim Dergisi 10(3): 28–38

    Google Scholar 

  58. Sinha N, Priyanka N and Joshi P K 2016 Using spatial multi-criteria analysis and ranking tool (SMART) in earthquake risk assessment: A case study of Delhi region India. Geomat. Natl. Hazards Risk 7(2): 680–701

    Article  Google Scholar 

  59. Ardalan A, Masoomi GR, Goya MM, et al 2009 Disaster health management: Iran's progress and challenges. Iran J Public Health 38: 93–97

  60. Cook A D and Dorussen H 2021 Civil protection and disaster management. In: The European Union’s Security Relations with Asian Partners Springer International Publishing, Cham, pp 185–207

    Chapter  Google Scholar 

  61. Ecer F 2021 Sustainability assessment of existing onshore wind plants in the context of triple bottom line: a best-worst method (BWM) based MCDM framework. Environ. Sci. Pollut. Res. 28(16): 19677–19693

    Article  Google Scholar 

  62. https://www.tuik.gov.tr/

  63. https://www.meb.gov.tr/

  64. Kamranzad F, Memarian H and Zare M 2020 Earthquake risk assessment for Tehran Iran. ISPRS Int. J. Geo-Inf. 9(7): 430

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank The Scientific and Technological Research Council of Türkiye for supporting this research work under Project No: 121E406.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihrimah Özmen.

Ethics declarations

Conflict of interest

The author declares that there are no conflict of interests.

Appendices

Appendix A, B, C: Decision matrix of criteria A, B, and C.

 

A

B

A1

A2

A3

A4

A5

A6

B1

B2

A11

A12

A13

A14

B11

B12

B13

B21

B22

B23

B24

B25

BÜNYAN

2953

50000

12812

362044

1

1

2

1

7

9643

2377

0

5923

5057

4016

4689

346

DEVELİ

7198

160705

117421

422886

1

1

1

1

5

18991

1832

607

3815

7726

6037

2001

5090

FELAHİYE

4458

27262

131

114419

1

1

1

1

1

16467

9172

0

6346

1763

5403

1714

0

HACILAR

1758

12366

643

12868

1

10

1

1

1

18657

1077

0

3528

507

3124

53

1816

İNCESU

34295

103000

7675

174938

10

1

1

1

10

14736

6085

0

9044

6646

5034

2373

1912

KOCASİNAN

6363

438865

7956

567525

10

1

4

1

4

15124

8579

3352

5868

2175

12865

1740

818

MELİKGAZİ

4222

75758

1104

77923

1

10

10

3

5

17451

13656

8825

3794

1165

12519

1497

707

ÖZVATAN

1238

7500

166

37215

1

1

1

1

1

18737

8360

6261

3530

0

5709

0

785

PINARBAŞI

4173

50000

2072

599771

1

1

1

1

5

18671

0

0

5248

5695

4239

0

2177

SARIOĞLAN

260

166400

871

176962

1

1

2

1

5

17825

773

0

5986

1465

4991

14

162

TALAS

6790

39867

62565

119469

1

10

2

1

5

16611

12631

4743

3754

2188

7680

9

818

TOMARZA

453

56646

160712

385993

1

1

1

1

1

12723

8370

613

4894

7299

4059

0

1871

YAHYALI

37825

36702

1486

173099

1

1

4

10

10

22087

3958

0

4448

30

1723

1335

994

YEŞİLHİSAR

40532

37000

21454

238757

1

1

1

3

7

19768

3698

0

6557

3050

3144

5

1008

 

C

C1

C2

C3

C4

C5

C6

C7

BÜNYAN

1530

3585

11873

8907

2542

1561

101

DEVELİ

4420

10583

22836

20276

5175

3005

212

FELAHİYE

236

482

1508

1841

895

546

28

HACILAR

743

1991

4226

3939

1023

515

34

İNCESU

2150

4836

10097

8206

2059

1328

79

KOCASİNAN

27557

66421

152230

121491

24400

11933

748

MELİKGAZİ

41763

99407

227722

176925

30236

13077

722

ÖZVATAN

130

280

935

1377

611

431

36

PINARBAŞI

1183

2873

6814

6905

2480

1537

111

SARIOĞLAN

709

1601

3940

4538

1785

1117

87

TALAS

11873

26498

70935

47915

8165

3240

157

TOMARZA

1318

3209

6746

6739

2214

1330

74

YAHYALI

2415

5464

11860

11051

2894

1840

150

YEŞİLHİSAR

933

2010

4682

5119

1657

1190

74

Appendix D, E, F, G: Decision matrix of criteria D, E, F, and G.

 

D

E

F

D1

D2

D3

D4

D5

D6

E1

E2

E3

F1

F2

F3

F4

F5

D11

D12

D13

D21

D22

D23

D24

D41

D42

D43

D51

D52

D53

D54

BÜNYAN

2

10

2

3

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

DEVELİ

1

1

1

10

1

1

1

1

1

1

1

1

3

1

1

3

1

1

5

1

1

1

1

1

FELAHİYE

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

5

1

1

1

1

1

HACILAR

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

İNCESU

1

1

6

3

1

1

1

1

1

1

1

1

1

1

1

1

1

1

5

1

10

1

1

1

KOCASİNAN

5

1

8

1

1

10

10

9

10

10

1

10

5

3

1

10

10

9

10

10

8

10

10

10

MELİKGAZİ

8

5

3

3

10

9

1

10

10

5

10

1

10

10

1

10

5

10

10

5

1

10

10

1

ÖZVATAN

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

5

1

1

1

1

1

PINARBAŞI

1

1

1

3

1

1

1

1

1

1

1

1

1

1

1

1

1

1

5

1

1

1

1

1

SARIOĞLAN

1

1

6

3

1

1

1

1

1

1

1

1

1

1

1

1

1

1

5

1

1

1

1

1

TALAS

10

1

9

1

1

1

1

8

1

1

1

10

3

3

1

3

8

6

5

4

1

5

10

1

TOMARZA

1

1

1

3

1

1

1

1

1

1

1

1

1

1

1

1

1

1

5

1

1

1

1

1

YAHYALI

1

1

10

7

1

1

1

1

1

1

1

1

3

1

1

2

1

1

5

1

1

1

1

1

YEŞİLHİSAR

1

1

6

3

1

1

1

1

1

1

1

1

1

1

1

1

1

2

10

1

1

1

1

1

 

G

G1

G2

G3

G4

G5

G6

G7

G11

G12

G13

G31

G32

G41

G42

G43

G61

G62

G63

G64

G65

G66

G71

G72

G73

BÜNYAN

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

1

1

DEVELİ

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

4

1

1

FELAHİYE

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

HACILAR

1

1

1

1

1

1

1

1

1

1

3

1

1

1

1

1

1

1

1

İNCESU

1

1

5

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

KOCASİNAN

3

10

10

10

10

5

10

6

3

3

7

10

10

5

3

10

8

8

4

MELİKGAZİ

10

2

10

7

10

10

4

10

10

10

10

10

7

10

10

1

10

10

10

ÖZVATAN

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

PINARBAŞI

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

SARIOĞLAN

1

1

1

1

1

1

1

1

1

1

3

1

1

1

1

1

1

1

1

TALAS

1

1

1

1

3

1

1

1

1

3

1

10

4

1

1

1

3

2

2

TOMARZA

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

1

1

YAHYALI

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

1

1

YEŞİLHİSAR

2

1

1

1

1

1

1

1

1

1

3

1

1

1

1

1

1

1

1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özmen, M. Evaluating earthquake vulnerability of 2023 Kayseri, Türkiye via BWM-ABAC method. Sādhanā 48, 179 (2023). https://doi.org/10.1007/s12046-023-02216-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12046-023-02216-x

Keywords

Navigation