Skip to main content

Advertisement

Log in

Vertical-axis hybrid turbines as wind and hydrokinetic energy harvesters: technological growth and future design strategies

  • Published:
Sādhanā Aims and scope Submit manuscript

Abstract

The eminent energy crisis and high emission of fossil fuels provide thrust for developing renewable energy-based technologies. Wind and hydrokinetic energies are the most promising renewable energy resources for electric power generation to meet the growing energy demand. The vertical-axis hybrid turbine, which combines the features of good starting characteristics of the Savonius turbine and the operational efficiency of the Darrieus turbine, can serve as a viable option for power generation. A variety of configurations of the hybrid turbine are possible based on several design parameters such as the relative position of the Darrieus and Savonius rotors, overlap ratio, solidity ratio, blade or buckets shape and radius ratio, attachment angle and others. To some extent, the influence of these parameters on the hybrid turbine performance has been investigated through experimental and numerical studies by considering a number of physical and computational models. In most of the findings, the range of maximum power coefficient values is recorded between 0.08 and 0.51. Though individual vertical axis turbines have been widely studied and reviewed, similar review papers on hybrid turbines are scarce. This paper brings out significant developments that have taken place in the area of hybrid turbines, identifies the operating parameters, highlights the challenges related to rotor/turbine aerodynamics, modelling, simulation, testing methodologies. Based on these discussions, the strategies for future hybrid turbine designs are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28
Figure 29
Figure 30
Figure 31
Figure 32
Figure 33

Similar content being viewed by others

Abbreviations

A :

Swept area of turbine (m2)

AR D :

Aspect ratio of H-rotor (or ϕ-rotor) (–)

AR S :

Aspect ratio of S-rotor (–)

c :

Chord length (m)

C P :

Power coefficient (–)

C Pmax :

Maximum power coefficient (–)

C T :

Torque coefficient (–)

C TS :

Static torque coefficient (–)

d :

Blade/bucket diameter (m)

D :

Diameter of turbine (m)

Fr :

Froude number

g :

Gravitational acceleration (m/s2)

H :

Height of turbine (m)

N :

Rotational speed (rpm)

P k :

Power available in the incoming fluid (W)

P c :

Power output of the turbine (W)

R D :

Radius of H-rotor (or ϕ-rotor) (m)

Re :

Reynolds number (–)

RR :

Radius ratio (–)

R S :

Radius of S-rotor (m)

T w :

Top width of the channel (m)

T :

Torque produced by the turbine/rotor (Nm)

T S :

Static torque of turbine/rotor (–)

V :

Free stream wind/water velocity (m/s)

α :

Blade curvature (–)

β :

Overlap ratio (–)

ε :

Arc angle of S-rotor (°)

γ :

Attachment angle (°)

θ :

Azimuth angle (°)

k :

Turbulence kinetic energy (m2/s2)

λ :

Tip-speed ratio (–)

λ D ,max :

Optimum tip-speed ratio of H/ϕ-rotor (–)

λ S ,max :

Optimum tip-speed ratio of S-rotor (–)

μ :

Dynamic viscosity of fluid (Pa s)

ρ :

Density of fluid (kg/m)3)

σ :

Solidity ratio (–)

ω :

Specific rate of dissipation (1/s)

Ω :

Rotational speed (rad/s)

CFD:

Computational fluid dynamics (–)

HHT:

Hybrid hydrokinetic turbine (–)

HWT:

Hybrid wind turbine (–)

OT:

Optimization technique (–)

RR:

Radius ratio (–)

SST:

Shear stress transport (–)

VAT:

Vertical-axis turbine (–)

References

  1. Batista N C, Melício R, Mendes V M F, Calderón M and Ramiro A 2015 On a self-start Darrieus wind turbine: blade design and field tests. Renew. Sustain. Energy Rev. 52: 508–522

    Article  Google Scholar 

  2. Borzuei D, Moosavian S F and Farajollahi M 2021 On the performance enhancement of the three-blade Savonius wind turbine implementing opening valve. ASME J. Energy Resour. Technol. 143: 051301

    Article  Google Scholar 

  3. Bhutta M M A, Hayat N, Farooq A U, Ali Z, Jamil S R and Hussain Z 2012 Vertical axis wind turbine-a review of various configurations and design techniques. Renew. Sustain. Energy Rev. 16(4): 1926–1939

    Article  Google Scholar 

  4. Salleh M B, Kamaruddin N M and Mohamed-Kassim Z 2020 The effects of deflector longitudinal position and height on the power performance of a conventional Savonius turbine. Energy Convers. Manag. 226: 113584

    Article  Google Scholar 

  5. Alom N and Saha U K 2018 Four decades of research into the augmentation techniques of Savonius wind turbine rotor. ASME J. Energy Resour. Technol. 140: 1–14

    Article  Google Scholar 

  6. Han D, Heo Y G, Choi N J, Nam S H, Choi K H and Kim K C 2018 Design, fabrication, and performance test of a 100-W helical-blade vertical-axis wind turbine at low tip-speed ratio. Energies 11: 1517

    Article  Google Scholar 

  7. Kouloumpis V, Sobolewski R A and Yan X 2020 Performance and life cycle assessment of a small scale vertical axis wind turbine. J. Clean. Prod. 247: 119520

    Article  Google Scholar 

  8. GWEC Report 2021, https://gwec.net/global-wind-report-2021/. (Accessed on 13.02.2023)

  9. CEA Report, 2020, https://cea.nic.in/old/reports/annual/annualreports/annual_report-2020.pdf. (Accessed on 15.02.2023)

  10. Kumar R, Raahemifar K and Fung A S 2018 A critical review of vertical axis wind turbines for urban applications. Renew. Sustain. Energy Rev. 89: 281–291

    Article  Google Scholar 

  11. Güney M S and Kaygusuz K 2010 Hydrokinetic energy conversion systems: A technology status review. Renew. Sustain. Energy Rev. 14(9): 2996–3004

    Article  Google Scholar 

  12. Doso O and Gao S 2019 Application of Savonius rotor for hydrokinetic power generation. ASME J. Energy Resour. Technol. 142: 1–6

    Google Scholar 

  13. Basumatary M, Biswas A and Misra R D 2020 Detailed hydrodynamic study for performance optimization of a combined lift and drag-based modified Savonius water turbine. ASME J. Energy Resour. Technol. 142: 1–12

    Article  Google Scholar 

  14. Vermaak H J, Kusakana K and Koko S P 2014 Status of micro-hydrokinetic river technology in rural applications: A review of literature. Renew. Sustain. Energy Rev. 29: 625–633

    Article  Google Scholar 

  15. Yuce M I and Muratoglu A 2015 Hydrokinetic energy conversion systems: A technology status review. Renew. Sustain. Energy Rev. 43: 72–82

    Article  Google Scholar 

  16. Laws N D and Epps B P 2016 Hydrokinetic energy conversion: Technology, research, and outlook. Renew. Sustain. Energy Rev. 57: 1245–1259

    Article  Google Scholar 

  17. Garman P 1986 Water current turbines: A fieldworker’s guide. Intermediate Technology Publishing, UK

    Book  Google Scholar 

  18. Gorlov A 1998 Development of the helical reaction hydraulic turbine.Final technical report (DE-FGO1-96EE 15669), DOE/EE/15669-TI

  19. Sornes K 2010 Small-scale water current turbines for river applications. Zero Emission Resource Organisation (ZERO)

  20. Dixon D 2007 Assessment of waterpower potential and development needs. Technical Report, Electric Power Research Institute (EPRI), Palo Alto, CA

  21. Kim G, Lee M E, Lee K S, Park J S, Jeong W M, Kang S K, Soh J G and Kim H 2012 An overview of ocean renewable energy resources in Korea. Renew. Sustain. Energy Rev. 16: 2278–2288

    Article  Google Scholar 

  22. Talukdar P K 2019 In-situ experiments and numerical simulation of vertical-axis hydrokinetic turbines for small-scale power generation. PhD Thesis, Department of Mechanical Engineering, IIT Guwahati, Assam, India

  23. Laws P, Saini J S, Kumar A and Mitra S 2019 Improvement in Savonius wind turbines efficiency by modification of blade designs - A numerical study. ASME J. Energy Resour. Technol. 142(6): 061303

    Article  Google Scholar 

  24. Mohammed A A, Ouakad H M, Sahin A Z and Bahaidarah H M 2019 Vertical axis wind turbine aerodynamics: Summary and review of momentum models. ASME J. Energy Resour. Technol. 141(5): 050801

    Article  Google Scholar 

  25. Battisti L L, Zanne L L, Dell’Anna S S, Dossena V V, Persico G G and Paradiso B B 2011 Aerodynamic measurements on a vertical axis wind turbine in a large scale wind tunnel. ASME J. Energy Resour. Technol. 133(3): 031201

    Article  Google Scholar 

  26. Ross I and Altman A 2011 Wind tunnel blockage corrections: review and application to Savonius vertical-axis wind turbines. J. Wind Eng. Ind. Aerodyn. 99: 523–538

    Article  Google Scholar 

  27. Amano R S 2017 Review of wind turbine research in 21st century. ASME J. Energy Resour. Technol. 139(5): 050801

    Article  Google Scholar 

  28. Mishra N, Gupta A S, Dawar J, Kumar A and Mitra S 2018 Numerical and experimental study on performance enhancement of Darrieus vertical-axis wind turbine with wingtip devices. ASME J. Energy Resour. Technol. 140(12): 121201

    Article  Google Scholar 

  29. Sagharichi A, Ghaghelestani T N and Toudarbari S 2019 Impact of harmonic pitch functions on performance of Darrieus wind turbine. J. Clean. Prod. 241(36): 118310

    Article  Google Scholar 

  30. Shigetomi A, Murai Y, YujiTasaka Y and Takeda Y 2011 Interactive flow field around two Savonius turbines. Renew. Energy 36(2): 536–545

    Article  Google Scholar 

  31. Saini G and Saini R P 2019 A review on technology, configurations, and performance of cross-flow hydrokinetic turbines. Int. J. Energy Res. 43: 6639–6679

    Google Scholar 

  32. Rossetti A and Pavesi G 2013 Comparison of different numerical approaches to the study of the H-Darrieus turbines start-up. Renew. Energy 50: 7–19

    Article  Google Scholar 

  33. Torabi Mahdi A, Zal Erfan N, Mustapha F and Wiriadidjaja S 2016 Study on start-up characteristics of H-Darrieus vertical axis wind turbines comprising NACA 4-digit series blade airfoils. Energy 112: 528–537

    Article  Google Scholar 

  34. Jacob J and Chatterjee D 2019 Design methodology of hybrid turbine towards better extraction of wind energy. Renew. Energy 131: 625–643

    Article  Google Scholar 

  35. Kyozuka Y 2008 An experimental study on the Darrieus-Savonius turbine for the tidal current power generation. J. Fluid Sci. Technol. 3(3): 439–449

    Article  Google Scholar 

  36. Sahim, K, Ihtisan K, Santoso D and Sipahutar R 2014 Experimental study of Darrieus-Savonius water turbine with deflector: Effect of deflector on the performance. Int. J. Rotat. Mach. 203108

  37. Golecha K, Eldho T I and Prabhu S V 2011 Influence of the deflector plate on the performance of modified Savonius water turbine. Appl. Energy 88: 3207–3217

    Article  Google Scholar 

  38. Zhou T and Rempfer D 2013 Numerical study of detailed flow field and performance of savonius wind turbines. Renew. Energy 51: 373–381

    Article  Google Scholar 

  39. Akwa J V, Vielmo H A and Petry A P 2012 A review on the performance of Savonius wind turbines. Renew. Sustain. Energy Rev. 16: 3054–3064

    Article  Google Scholar 

  40. Ghasemian M, Ashrafi Z N and Sedaghat A 2017 A review on computational fluid dynamic simulation techniques for Darrieus vertical axis wind turbines. Energy Convers. Manag. 149: 87–100

    Article  Google Scholar 

  41. Gorban A, Gorlov A M and Silantyev V M 2001 Limits of the turbine efficiency for free fluid flow. ASME J. Energy Resour. Technol. 123(4): 311–317

    Article  Google Scholar 

  42. Vennell R 2013 Exceeding the Betz limit with tidal turbines. Renew. Energy 55: 277–285

    Article  Google Scholar 

  43. Darrieus G J M 1931 Turbine having its rotating shaft traverse to the flow of the current. US Patent No. 1,835,018

  44. Dossena V, Persico G, Paradiso B, Battisti L, Dell’Anna S, Brighenti A and Benini E 2015 An experimental study of the aerodynamics and performance of a vertical axis wind turbine in a confined and unconfined environment. ASME J. Energy Resour. Technol. 137(5): 051207

    Article  Google Scholar 

  45. Tjiu W, Marnoto T, Mat S, Ruslan M H and Sopian K 2015 Darrieus vertical axis wind turbine for power generation I: Assessment of Darrieus VAWT configurations. Renew. Energy 75: 50–67

    Article  Google Scholar 

  46. Liu J, Lin H and Zhang J 2019 Review on the technical perspectives and commercial viability of vertical-axis wind turbines. Ocean Eng. 182: 608–626

    Article  Google Scholar 

  47. Jain S and Saha U K 2020 The state-of-the-art technology of H-type Darrieus wind turbine rotors. ASME J. Energy Resource Technol. 142(3): 030801

    Article  Google Scholar 

  48. Cheng Q, Liu X, Ji H S, Kim K C and Yang B 2017 Aerodynamic analysis of a helical vertical axis wind turbine. Energies 10: 575

    Article  Google Scholar 

  49. Talukdar P K Kulkarni V, Dehingia D and Saha U K 2017 Evaluation of a model helical–bladed hydrokinetic turbine characteristics from in-situ experiments. In: ASME 2017 11th International Conference on Energy Sustainability Paper No. ES2017–3490, June 26–30, Charlotte, NC, USA

  50. Talukdar P K, Kulkarni V and Saha U K 2018 Field testing of model hydrokinetic helical-bladed turbine for small-scale power generation. Renew. Energy 127: 158–167

    Article  Google Scholar 

  51. Jafari M, Razavi A and Mirhosseini M 2018 Effect of airfoil profile on aerodynamic performance and economic assessment of H-rotor vertical axis wind turbines. Energy 165: 792–810

    Article  Google Scholar 

  52. Islam M, Ting D S K and Fartaj A 2007 Desirable airfoil features for smaller-capacity straight-bladed VAWT. Wind Eng. 31(3): 165–196

    Article  Google Scholar 

  53. Mohamed M H 2012 Performance investigation of H-rotor Darrieus turbine with new airfoil shapes. Energy 47: 522–530

    Article  Google Scholar 

  54. Ismail M F and Vijayaraghavan K 2015 The effects of aerofoil profile modification on a vertical axis wind turbine performance. Energy 80: 20–31

    Article  Google Scholar 

  55. Sengupta A R, Biswas A and Gupta R 2016 Studies of some high solidity symmetrical and unsymmetrical blade H-Darrieus rotors with respect to starting characteristics, dynamic performances and flow physics in low wind streams. Renew. Energy 93: 536–547

    Article  Google Scholar 

  56. Savonius S J 1931 The S-rotor and its applications. Mech. Eng. 53(5): 333–338

    Google Scholar 

  57. Tummala A, Velamati R K, Sinha D K, Indraja V and Krishna V H 2016 A review on small scale wind turbines. Renew. Sustain. Energy Rev. 56: 1351–1371

    Article  Google Scholar 

  58. Marinić-Kragić I, Vučina D and Milas Z 2020 Computational analysis of savonius wind turbine modifications including novel scooplet-based design attained via smart numerical optimization. J. Clean. Prod. 262(21): 121310

    Article  Google Scholar 

  59. Hassanzadeh R, Mohammadnejad M and Mostafavi S 2020 Comparison of various blade profiles in a two-blade conventional Savonius wind turbine. ASME J. Energy Resour. Technol. 143(2): 021301

    Article  Google Scholar 

  60. Jian C, Kumbernuss J, Linhua Z, Lin L and Hongxing Y 2012 Influence of phase-shift and overlap ratio on Savonius wind turbine’s performance. ASME J. Solar Energy Eng. 134(1): 011016

    Article  Google Scholar 

  61. Talukdar P K, Sardar A, Kulkarni V and Saha U K 2018 Parametric analysis of model Savonius hydrokinetic turbines through experimental and computational investigations. Energy Convers. Manag. 158: 36–49

    Article  Google Scholar 

  62. El-Askary W A, Saad A S and AbdelSalam A M 2020 Experimental and theoretical studies for improving the performance of a modified shape Savonius wind turbine. ASME J. Energy Resour. Technol. 142(12): 1–12

    Article  Google Scholar 

  63. Rathod U H, Talukdar P K, Kulkarni V and Saha U K 2019 Effect of capped vents on torque distribution of semicircular-bladed Savonius wind rotor. ASME J. Energy Resour. Technol. 141(10): 101201

    Article  Google Scholar 

  64. Ricci R, Romagnoli R, Montelpare S and Vitali D 2016 Experimental study on a Savonius wind rotor for street lighting systems. Appl. Energy 161: 143–152

    Article  Google Scholar 

  65. Wong K H, Chong W T, Sukiman N L, Poh S C, Shiah Y and Wang C 2017 Performance enhancements on vertical axis wind turbines using flow augmentation systems: A review. Renew. Sustain. Energy Rev. 73: 904–921

    Article  Google Scholar 

  66. Kumar A and Saini R P 2016 Performance parameters of Savonius type hydrokinetic turbine—a review. Renew. Sustain. Energy Rev. 64: 289–310

    Article  MathSciNet  Google Scholar 

  67. Talukdar P K, Kulkarni V and Saha U K 2018 Performance estimation of Savonius wind and Savonius hydrokinetic turbines under identical power input. J. Renew. Sustain. Energy 10(6): 064704

    Article  Google Scholar 

  68. Blackwell B, Sheldahl R and Feltz L 1977 Wind tunnel performance data for two- and three-bucket Savonius rotors. Sandia Labs, Albuquerque, NM (USA)

  69. Sivasegaram S 1978 Secondary parameters affecting the performance of resistance-type vertical-axis wind rotors. Wind Eng. 2: 49–58

    Google Scholar 

  70. Kahn M H 1978 Model and prototype performance characteristics of Savonius rotor windmill. Wind Eng. 2: 75–85

    Google Scholar 

  71. Fernando M S U K and Modi V J 1989 A numerical analysis of the unsteady flow past a Savonius wind turbine. J. Wind Eng. Ind. Aerodyn. 32: 303–327

    Article  Google Scholar 

  72. Ushiyama I and Nagai H 1988 Optimum design configurations and performance of Savonius rotors. Wind Eng. 12: 59–75

    Google Scholar 

  73. Fujisawa N and Gotoh F 1994 Experimental study on the aerodynamic performance of a Savonius rotor. J. Solar Energy Engi. 116(3): 148–152

    Article  Google Scholar 

  74. Fujisawa N and Gotoh F 1992 Visualization study of the flow in and around a Savonius rotor. Exp. Fluids 12: 407–412

    Article  Google Scholar 

  75. D’Alessandro V, Montelpare S, Ricci R and Secchiaroli A 2010 Unsteady aerodynamics of a Savonius wind rotor: a new computational approach for the simulation of energy performance. Energy 35(8): 3349–3363

    Article  Google Scholar 

  76. Chen L, Chen J, Xu H, Yang H, Ye C and Liu D 2016 Wind tunnel investigation on the two- and three-blade Savonius rotor with central shaft at different gap ratio. J. Renew. Sustain. Energy 8(1): 013303

    Article  Google Scholar 

  77. Mari M, Venturini M and Beyene A 2017 A novel geometry for vertical axis wind turbines based on the Savonius concept. ASME J. Energy Resour. Technol. 139(6): 061202

    Article  Google Scholar 

  78. Bach G 1931 Untersuchungen uber Savonius-rotoren und verwandte Stromungsmaschinen. Forsch. Geb. Ingenieurwes 2(6): 218–231

    Article  Google Scholar 

  79. Benesh A H 1988 Wind turbine system using a vertical axis Savonius type rotor. U.S. patent US5494407 A

  80. Mojola O O 1985 On the aerodynamic design of the Savonius wind mill rotor. J. Wind Eng. Ind. Aerodyn. 21(2): 223–231

    Article  Google Scholar 

  81. Roy S and Saha U K 2015 Wind tunnel experiments of a newly developed two-bladed Savonius-style wind turbine. Appl. Energy 137: 117–125

    Article  Google Scholar 

  82. Banerjee A, Roy S, Mukherjee P and Saha U K 2014 Unsteady flow analysis around an elliptic-bladed Savonius-style wind turbine. In: Proceedings of the ASME 2014 Gas Turbine India Conference GTINDIA-2014, pp. 1–7

  83. Alom N and Saha U K 2019 Examining the aerodynamic drag and lift characteristics of a newly developed elliptical-bladed Savonius rotor. ASME J. Energy Resour. Technol. 141(5): 051201

    Article  Google Scholar 

  84. Alom N and Saha U K 2019 Evolution and progress in the development of Savonius wind turbine rotor blade profiles and shapes. ASME J. Solar Energy Eng. 14(3): 030801

    Article  Google Scholar 

  85. Kang C, Liu H and Yang X 2014 Review of fluid dynamics aspects of Savonius-rotor-based vertical-axis wind rotors. Renew. Sustain. Energy Rev. 33: 499–508

    Article  Google Scholar 

  86. Kang C, Zhang F, Yang M G and Mao X J 2011 Analysis of three-dimensional flow around a vertical-axis spiral wind rotor. Acta Energ Sol 32: 1777–1784

    Google Scholar 

  87. Kamoji M A, Kedare S B and Prabhu S V 2009 Performance tests on helical Savonius rotors. Renew. Energy 34: 521–529

    Article  Google Scholar 

  88. Toja-Silva F, Colmenar-Santos A and Castro-Gil M 2013 Urban wind energy exploitation systems: behaviour under multidirectional flow conditions-opportunities and challenges. Renew. Sustain. Energy Rev. 24: 364–378

    Article  Google Scholar 

  89. Saha U K and Rajkumar M J 2006 On the performance analysis of Savonius rotor with twisted blades. Renew. Energy 31: 1776–1788

    Article  Google Scholar 

  90. Basumatary M, Biswas A and Misra R D 2021 Experimental verification of improved performance of Savonius turbine with a combined lift and drag based blade profile for ultra-low head river application. Sustain. Energy Technol. Assess. 44: 100999

    Google Scholar 

  91. Siddiqui A S, Alam M, Saleem M, Memon A H, Shahzad M and Jamil M S 2018 Experimental study to assess the performance of combined Savonius Darrieus vertical axis wind turbine at different arrangements. In: IEEE 21st International Multi-Topic Conference (INMIC), Karachi, pp. 1–8

  92. Miller M A, Duvvuri S, Brownstein I, Lee M, Dabiri J O and Hultmark M 2018 Vertical-axis wind turbine experiments at full dynamic similarity. J. Fluid Mech. 844: 707–720

    Article  MATH  Google Scholar 

  93. Fertahi S, Bouhal T, Rajad O, Kouskou T, Arid A, Rhafiki T, Jamil A and Benbassou A 2018 CFD performance enhancement of a low cut-in speed current vertical tidal turbine through the nested hybridization of Savonius and Darrieus. Energy Convers. Manag. 169: 266–278

    Article  Google Scholar 

  94. Saini G and Saini R P 2018 A numerical analysis to study the effect of radius ratio and attachment angle on hybrid hydrokinetic turbine performance. Energy Sustain. Dev. 47: 94–106

    Article  Google Scholar 

  95. Åkerlund J R 1985 The erigen combined Darrieus-Savonius type of wind generator. Ericsson Power Syst. 8–163

  96. Wakui T, Tanzawa Y, Hashizume T and Nagao T 2005 Hybrid configuration of Darrieus and Savonius rotors for stand-alone wind turbine-generator systems. Electr. Eng. Jpn. 150(4): 13–22

    Article  Google Scholar 

  97. Kou W, Shi X, Yuan B and Fan L 2011 Modeling analysis and experimental research on a combined-type vertical axis wind turbine. In: International Conference on Electronics, Communications and Control ICECC 2011—Proceedings, no. 081005414, pp. 1537–1541

  98. Wu Y K, Lin H J and Lin J H 2019 Certification and testing technology for small vertical axis wind turbine in Taiwan. Sustain. Energy Technol. Assess. 31: 34–42

    Google Scholar 

  99. Sarma J, Jain S, Mukherjee P and Saha U K 2021 Hybrid/combined Darrieus-Savonius wind turbines: Erstwhile development and future prognosis. ASME J. Solar Energy Eng. 14(5): 050801

    Article  Google Scholar 

  100. VanZwieten J, McAnally W, Ahmad J, Davis T, Martin J and Bevelhimer M 2014 In-stream hydrokinetic power: Review and appraisal. Journal of Energy Engineering 04014024

  101. Bansal R C, Bhatti T S and Kothari D P 2002 On some design aspects of wind energy conversion systems. Energy Convers. Manag. 43: 2175–2187

    Article  Google Scholar 

  102. Menet J L 2004 A double-step Savonius rotor for local production of electricity: A design study. Renew. Energy 29: 1843–1862

    Article  Google Scholar 

  103. Van Treuren K W 2015 Small-scale wind turbine testing in wind tunnels under low Reynolds number conditions. ASME J. Energy Resour. Technol. 137(5): 051208

    Article  Google Scholar 

  104. Patel V, Bhat G, Eldho T I and Prabhu S V 2017 Influence of overlap ratio and aspect ratio on the performance of Savonius hydrokinetic turbine. Int. J. Energy Res. 41: 829–844

    Article  Google Scholar 

  105. Gavaldà J, Massons J and Díaz F 1990 Experimental study on a self-adapting Darrieus Savonius wind machine. Solar Wind Technol. 7(4): 457–461

    Article  Google Scholar 

  106. Bhuyan S and Biswas A 2014 Investigations on self-starting and performance characteristics of simple H and hybrid H-Savonius vertical axis wind rotors. Energy Convers. Manag. 87: 859–867

    Article  Google Scholar 

  107. Sun X, Chen Y, Cao Y, Wu G, Zheng Z and Huang D 2016 Research on the aerodynamiccharacteristics of a lift drag hybrid vertical axis wind turbine. Adv. Mech. Eng. 8(1): 1–11

    Article  Google Scholar 

  108. Ahmedov A S 2015 Investigation of the performance of a hybrid wind turbine Darrieus-Savonius. PhD Thesis, Loughborough University, UK

  109. Roshan A, Sagharichi A and Maghrebi M J 2020 Non-dimensional parameters effects on hybrid Darrieus–Savonius wind turbine performance. ASME J. Energy Resour. Technol. 142(1): 1–12

    Article  Google Scholar 

  110. Pallotta A, Pietrogiacomi D and Romano G P 2020 HYBRI—A combined Savonius–Darrieus wind turbine: Performances and flow fields. Energy 191: 116433

    Article  Google Scholar 

  111. Saini G and Saini R P 2020 A computational investigation to analyze the effects of different rotor parameters on hybrid hydrokinetic turbine performance. Ocean Eng. 199: 107019

    Article  Google Scholar 

  112. Liang X, Fu S, Ou B, Wu C, Yh Chao C and Pi K 2017 A computational study of the effects of the radius ratio and attachment angle on the performance of a Darrieus Savonius combined wind turbine. Renew. Energy 113: 329–334

    Article  Google Scholar 

  113. Hosseini A and Goudarzi N 2018 CFD and control analysis of a smart hybrid vertical axis wind turbine. In: ASME 2018 Power Conference, Paper No. POWER2018-7488, June 24–28, Lake Buena Vista, FL, USA

  114. Hosseini A and Goudarzi N 2019 Design and CFD study of a hybrid vertical-axis wind turbine by employing a combined Bach-type and H-Darrieus rotor systems. Energy Convers. Manag. 89: 49–59

    Article  Google Scholar 

  115. Liu K, Yu M and Zhu W 2019 Enhancing wind energy harvesting performance of vertical-axis wind turbines with a new hybrid design: A fluid-structure interaction study. Renew. Energy 140: 912–927

    Article  Google Scholar 

  116. Asadi M and Hassanzadeh R 2021 Effects of internal rotor parameters on the performance of a two bladed Darrieus-two bladed Savonius hybrid wind turbine. Energy Convers. Manag. 238: 114109

    Article  Google Scholar 

  117. Gupta R, Biswas A and Sharma K K 2008 Comparative study of three-bucket Savonius rotor with a combined three-bucket Savonius-three bladed Darrieus rotor. Renew. Energy 33(9): 1974–1981

    Article  Google Scholar 

  118. Debnath B K, Biswas A and Gupta R 2009 Computational fluid dynamics analysis of a combined three-bucket Savonius and three-bladed Darrieus rotor at various overlap conditions. J. Renew. Sustain. Energy 1: 033110

    Article  Google Scholar 

  119. Abid M 2015 Design, Development and testing of a combined Savonius and Darrieus vertical axis wind turbine. Iran. J. Energy Environ. 6(1): 1–4

    Google Scholar 

  120. Mohamed M H 2013 Impacts of solidity and hybrid system in small wind turbines performance. Energy 57: 495–504

    Article  Google Scholar 

  121. Gupta R and Biswas A 2011 CFD analysis of flow physics and aerodynamic performance of a combined three-bucket Savonius and three-bladed Darrieus turbine. Int. J. Green Energy 8: 209–233

    Article  Google Scholar 

  122. Sharma K K, Biswas A and Gupta R 2013 Performance measurement of a three-bladed combined Darrieus–Savonius rotor. Int. J. Renew. Energy Res. 3(4): 885–891

    Google Scholar 

  123. Ghosh A, Biswas A, Sharma K K and Gupta R 2015 Computational analysis of flow physics of a combined three bladed Darrieus-Savonius wind rotor. J. Energy Inst. 88(4): 425–437

    Article  Google Scholar 

  124. Sahim K, Ihtisan K, Santoso D and Sipahutar R 2013 Performance of combined water turbine with semielliptic section of the Savonius rotor. Int. J. Rotat. Mach. Article ID 985943

  125. Castelli M R, De Betta S and Benini E 2012 Effect of blade number on a straight-bladed vertical-axis Darreius wind turbine. World Acad. Sci. Eng. Technol. 6(1): 256–262

    Google Scholar 

  126. Li Q, Maeda T, Kamada Y, Murata J, Furukawa K and Yamamoto M 2015 Effect of number of blades on aerodynamic forces on a straight-bladed vertical axis wind turbine. Energy 90(part-1): 784–795

    Article  Google Scholar 

  127. Paraschivoiu I 2002 Wind turbine design: with emphasis on Darrieus concept. Polytechnic International Press, Canada

    Google Scholar 

  128. Templin R J 1974 Aerodynamic performance theory for the NRC vertical-axis wind turbine. Laboratory technical report, LTR-LA-160. Ottawa: National Research Council of Canada

  129. Sagharichi A, Zamani M and Ghasemi A 2018 Effect of solidity on the performance of variable-pitch vertical axis wind turbine. Energy 161: 753–775

    Article  Google Scholar 

  130. Du L H, Grant I and Robert G D 2019 A review of H-Darrieus wind turbine aerodynamic research. Proc. IMechE Part C J. Mech. Eng. Sci. 233: 23–24

    Article  Google Scholar 

  131. Sivasegaram S 1979 Concentration augmentation of power in a Savonius type wind rotor. Wind Eng. 3(1): 52–61

    Google Scholar 

  132. Jamieson P 2011 Innovation in wind turbine design. Wiley, UK

    Book  Google Scholar 

  133. Malipeddi A R and Chatterjee D 2012 Influence of duct geometry on the performance of Darrieus hydroturbine. Renew. Energy 43: 292–300

    Article  Google Scholar 

  134. Altan B D and Atilgan M 2008 An experimental and numerical study on the improvement of the performance of Savonius wind rotor. Energy Convers. Manag. 49(12): 3425–3432

    Article  Google Scholar 

  135. Roy S and Saha U K 2013 Review of experimental investigations into the design, performance and optimization of the Savonius rotor. Proc. IMechE Part A J. Power Energy 227(4): 528–542

    Article  Google Scholar 

  136. Tartuferi M, D’Alessandro V, Montelpare S and Ricci R 2015 Enhancement of Savonius wind rotor aerodynamic performance: A computational study of new blade shapes and curtain systems. Energy 79: 371–384

    Article  Google Scholar 

  137. de Santoli L, Albo A, Astiaso Garcia D, Bruschi D and Cumo F 2014 A preliminary energy and environmental assessment of a micro wind turbine prototype in natural protected areas. Sustain. Energy Technol. Assess. 8: 42–56

    Google Scholar 

  138. Mohamed O S, Ibrahim A, Etman A, Abdelkader A and Elbaz A 2020 numerical investigation of Darrieus wind turbine with slotted airfoil blades. Energy Convers. Manag. X 5: 100026

    Google Scholar 

  139. Niebuhr C M, van Dijk M, Neary V S and Bhagwan J N 2019 A review of hydrokinetic turbines and enhancement techniques for canal installations: Technology, applicability and potential. Renew. Sustain. Energy Rev. 113: 109240

    Article  Google Scholar 

  140. Mohamed M H, Janiga G, Pap E and Thevenin D 2010 Optimization of Savonius turbines using an obstacle shielding the returning blade. Renew. Energy 35(11): 2618–2626

    Article  Google Scholar 

  141. Morcos S M, Khalafallah M G and Heikel H A 1981 The effect of shielding on the aerodynamic performance of Savonius wind turbines. In: 16th Intersociety Energy Conversion Engineering Conference, Atlanta, GA, Aug. 9–14, pp. 2037–2040

  142. Roy S, Mukherjee P and Saha U K, 2014, Aerodynamic performance evaluation of novel Savonius-style wind turbine under oriented jet. ASME 2014 Gas Turbine India Conference, Paper No. GTIndia2014 - 8152, December 15–17, New Delhi, India

  143. Shikha Bhatti T S and Kothari D P 2003 Wind energy conversion systems as a distributed source of generation. J. Energy Eng. 129(3): 69–80

    Article  Google Scholar 

  144. Alexander A J and Holownia B P 1978 Wind tunnel tests on a Savonius rotor. J. Wind Eng. Ind. Aerodyn. 3(4): 343–351

    Article  Google Scholar 

  145. Ogawa T, Yoshida H and Yokota Y 1989 Development of rotational speed control systems for a Savonius-type wind turbine. ASME J. Fluids Eng. 111(1): 53–58

    Article  Google Scholar 

  146. Shaughnessy B M and Probert S D 1992 Partially-blocked Savonius rotor. Appl. Energy 43(4): 239–249

    Article  Google Scholar 

  147. Irabu K and Roy J N 2011 Study of direct force measurement and characteristics on blades of Savonius rotor at static state. Exp. Therm. Fluid Sci. 35(4): 653–659

    Article  Google Scholar 

  148. El-Askary W A, Nasef M H, AbdEL-hamid A A and Gad H E 2015 Harvesting wind energy for improving performance of Savonius rotor. J. Wind Eng. Ind. Aerodyn. 139: 8–15

    Article  Google Scholar 

  149. Kerikous E and Thévenin D 2019 Optimal shape and position of a thick deflector plate in front of a hydraulic Savonius turbine. Energy 189: 116157

    Article  Google Scholar 

  150. Nimvaria M E, Fatahianb H and Fatahian E 2020 Performance improvement of a Savonius vertical axis wind turbine using a porous deflector. Energy Convers. Manag. 220: 113062

    Article  Google Scholar 

  151. Liu Z, Wang Z, Shi H and Qu H 2018 Numerical study of a guide-vane-augmented vertical darrieus tidal-current-turbine. J. Hydrodyn. 31(3): 522–530

    Article  Google Scholar 

  152. Bedon G, De Betta S and Benini E 2015 A computational assessment of the aerodynamic performance of a tilted Darrieus wind turbine. J. Wind Eng. Ind. Aerodyn. 145: 263–269

    Article  Google Scholar 

  153. Daroczy L, Janiga G, Petrasch K, Webner M C and Thevenin D 2015 Comparative analysis of turbulence models for the aerodynamic simulation of H-darrieus rotors. Energy 90(1): 680–690

    Article  Google Scholar 

  154. Chowdhury A M, Akimoto H and Hara Y 2016 Comparative CFD analysis of vertical axis wind turbine in upright and tilted configuration. Renew. Energy 85: 327–337

    Article  Google Scholar 

  155. Plourde B D, Abraham J P and Mowry G S 2012 Simulations of three-dimensional vertical axis turbines for communication applications. Wind Eng. 36(4): 443–454

    Article  Google Scholar 

  156. Nasef M, El-Askary W, AbdEL-Hamid A and Gad H 2013 Evaluation of Savonius rotor performance: static and dynamic studies. J. Wind Eng. Ind. Aerodyn. 123: 1–11

    Article  Google Scholar 

  157. Alom N and Saha U K 2021 In the quest of an appropriate turbulence model for analyzing the aerodynamics of a conventional Savonius (S-type) wind rotor. J. Renew. Sustain. Energy 13: 023313

    Article  Google Scholar 

  158. Jain S and Saha U K 2020 Capturing the dynamic stall in H-type Darrieus wind turbines using different URANS turbulence models. ASME J. Energy Resour. Technol. 142: 091302

    Article  Google Scholar 

  159. Hosseinia A and Goudarzi N 2019 Design and CFD study of a hybrid vertical-axis wind turbine by employing a combined Bach-type and H-Darrieus rotor systems. Energy Convers. Manag. 189: 49–59

    Article  Google Scholar 

  160. Cummings R M, Forsythe J R, Morton S A and Squires K D 2003 Computational challenges in high angle of attack flow prediction. Prog. Aerosp. Sci. 39(5): 369–384

    Article  Google Scholar 

  161. Ghasemian M and Nejat A 2015 Aero-acoustics prediction of a vertical axis wind turbine using large eddy simulation and acoustic analogy. Energy 88: 711–717

    Article  Google Scholar 

  162. Mehta D, van Zuijlen A H, Koren B, Holierhoek J G and Bijl H 2014 Large eddy simulation of wind farm aerodynamics: a review. J. Wind Eng. Ind. Aerodyn. 133: 1–17

    Article  Google Scholar 

  163. Shamsoddin S and Porté-Agel F 2014 Large eddy simulation of vertical axis wind turbine wakes. Energies 7(2): 890–912

    Article  Google Scholar 

  164. Posa A and Balaras E 2018 Large eddy simulation of an isolated vertical axis wind turbine. J. Wind Eng. Ind. Aerodyn. 172: 139–151

    Article  Google Scholar 

  165. Shamsoddin S and Porté-agel F 2016 A large-eddy simulation study of vertical axis wind turbine wakes in the atmospheric boundary layer. Energies 9(5): 1–23

    Article  Google Scholar 

  166. Lu H and Porte-Agel F 2011 Large-eddy simulation of a very large wind farm in a stable atmospheric boundary layer. Phys. Fluids 23: 065101

    Article  Google Scholar 

  167. Li C, Zhu S, Xu Y L and Xiao Y 2013 2.5D Large eddy simulation of vertical axis wind turbine in consideration of high angle of attack flow. Renew. Energy 51: 317–330

    Article  Google Scholar 

  168. Peng H Y and Lam H F 2016 Turbulence effects on the wake characteristics and aerodynamic performance of a straight-bladed vertical axis wind turbine by wind tunnel tests and large eddy simulations. Energy 109: 557–568

    Article  Google Scholar 

  169. Elkhoury M, Kiwata T and Aoun E 2015 Experimental and numerical investigation of a three-dimensional vertical-axis wind turbine with variable-pitch. J. Wind Eng. Ind. Aerodyn. 139: 111–123

    Article  Google Scholar 

  170. Spalart P R 2000 Strategies for turbulence modelling and simulations. Internal Journal. Of Heat Fluid Flow 21(3): 252–263

    Article  Google Scholar 

  171. Lei H, Zhou D, Bao Y, Li Y and Han Z 2017 Three-dimensional improved delayed detached eddy simulation of a two-bladed vertical axis wind turbine. Energy Convers. Manag. 133: 235–248

    Article  Google Scholar 

  172. Dobrev I and Massouh F 2011 CFD and PIV investigation of unsteady flow through Savonius wind turbine. Energy Procedia 6: 711–720

    Article  Google Scholar 

  173. Syawitri T P, Yao Y F, Chandra B and Yao J 2021 Comparison study of URANS and hybrid RANS-LES models on predicting vertical axis wind turbine performance at low, medium and high tip speed ratio range. Renew. Energy 168: 247–269

    Article  Google Scholar 

  174. Lam H F and Peng H Y 2016 Study of wake characteristics of a vertical axis wind turbine by two- and three-dimensional computational fluid dynamics simulations. Renew. Energy 90: 386–398

    Article  Google Scholar 

  175. Raj V S, Solanki R S, Chalamalla V K and Sinha S S 2021 Numerical simulations and analysis of flow past vertical-axis wind turbines employing the actuator line method. In: Proceedings of the 26th National and 4th International ISHMT-ASTFE Heat and Mass Transfer Conference, December 17–20, IIT Madras, Chennai-600036, Tamil Nadu, India

  176. Bachant P, Goude A and Wosnik M 2016 Actuator line modeling of vertical-axis turbines, https://arxiv.org/pdf/1605.01449.pdf

  177. Zhang J H 2022 Investigating synergy between vertical axis wind turbines using the actuator line model. Masters Thesis, Waterloo, ON, Canada

  178. Melani P F, Balduzzi F, Ferrara G and Bianchini A 2021 Tailoring the actuator line theory to the simulation of vertical-axis wind turbines. Energy Convers. Manag. 243: 114422

    Article  Google Scholar 

  179. Mendoza V, Bachant P, Ferreira C and Goude A 2019 Near-wake flow simulation of a vertical axis turbine using an actuator line model. Wind Energy 22: 171–188

    Article  Google Scholar 

  180. Mohammadi M, Lakestani M and Mohamed M H 2018 Intelligent parameter optimization of Savonius rotor using artificial neural network and genetic algorithm. Energy 143: 56–68

    Article  Google Scholar 

  181. Ferdoues M S, Ebrahimi S and Vijayaraghavan K 2017 Multi-objective optimization of the design and operating point of a new external axis wind turbine. Energy 125: 643–653

    Article  Google Scholar 

  182. Chan C M, Bai H L and He D Q 2018 Blade shape optimization of the savonius wind turbine using a genetic algorithm. Appl. Energy 213: 148–157

    Article  Google Scholar 

  183. Neto J X V, Junior E J G, Moreno S R, Ayala H V H, Mariani V C and Coelho L S 2018 Wind turbine blade geometry design based on multi-objective optimization using metaheuristics. Energy 162: 645–658

    Article  Google Scholar 

  184. Ramadan A, Yousef K, Said M and Mohamed M H 2018 Shape optimization and experimental validation of a drag vertical axis wind turbine. Energy 151: 839–853

    Article  Google Scholar 

  185. Agarwal A, Kansagara D D, Sharma D and Saha U K 2019 Savonius wind turbine blade profile optimization by coupling CFD simulations with simplex search technique. Paper No. GTIndia2019-2442, ASME 2019 Gas Turbine India, December 5–6, Chennai, Tamil Nadu, India

  186. Carrigan T J, Dennis B H, Han Z X and Wang B P 2012 Aerodynamic shape optimization of a vertical-axis wind turbine using differential evolution. ISRN Renew. Energy 1–16

  187. Jafaryar M, Kamrani R, Gorji-bandpy M, Hatami M and Ganji D D 2016 Numerical optimization of the asymmetric blades mounted on a vertical axis cross-flow wind turbine. Int. Commun. Heat Mass Transf. 70: 93–104

    Article  Google Scholar 

  188. Ma N, Lei H, Han Z, Zhou D, Bao Y, Zhang K, Zhou L and Chen C 2018 Airfoil optimization to improve power performance of a high-solidity vertical axis wind turbine at a moderate tip speed ratio. Energy 150: 236–252

    Article  Google Scholar 

  189. Li C, Xiao Y, Xu Y, Peng Y, Hu G and Zhu S 2018 Optimization of blade pitch in h-rotor vertical axis wind turbines through computational fluid dynamics simulations. Appl. Energy 212: 1107–1125

    Article  Google Scholar 

  190. Roy S, Das R and Saha U K 2018 An inverse method for optimization of geometric parameters of a Savonius style wind turbine. Energy Convers. Manag. 155: 116–127

    Article  Google Scholar 

  191. Alom N, Das R and Saha U K 2019 Optimization of aerodynamic parameters of an elliptical-Bladed Savonius wind rotor using multi-objective genetic algorithm. Paper No. GTIndia2019-2346, ASME Gas Turbine India Conference, December 05–06, Chennai, India

  192. Sargolzaei J and Kianifar A 2010 Neuro-fuzzy modeling tools for estimation of torque in Savonius rotor wind turbine. Adv. Eng. Softw. 41: 619–626

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors express their heartfelt appreciation to all the authors of classic and popular papers/reports/theses/patents that served as the foundation of this review article. All the sources of figures and data used in this review work are gratefully acknowledged and are listed in the references. The authors would like to extend apology if any source is not given due credit. Finally, the authors wish to thank and acknowledge the Elsevier Publishing Company, Amsterdam, Netherlands, for permitting us to reproduce some of the images/figures from their publications in this review article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parag K Talukdar.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talukdar, P.K., Kulkarni, V., Chatterjee, D. et al. Vertical-axis hybrid turbines as wind and hydrokinetic energy harvesters: technological growth and future design strategies. Sādhanā 48, 178 (2023). https://doi.org/10.1007/s12046-023-02176-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12046-023-02176-2

Keywords

Navigation