Skip to main content

Advertisement

Log in

A comprehensive appraisal on the effect of aerosol on mountain glaciers: special reference to Sikkim Himalayan region of India

  • Published:
Sādhanā Aims and scope Submit manuscript

Abstract

Mountain glaciers are of immense importance for the balanced natural ecosystem. Billions of human life depend on this natural reserve. However, there is an alarming situation worldwide to save this resource. The melting rate of glaciers is a matter of serious concern and one of the driving forces is air pollution. Many research studies have suggested that the deposition of aerosol particles is closely associated with the intensification of glacier retreat. We are witnessing the imperative necessity to understand the regional role of aerosol pollutants in glaciers melting. The third largest glacier occupier, the Himalayan mountain glacier has also unexceptionally countersigned many calamities such as glacial lake outburst floods, flash floods, landslides and biodiversity loss. Since the geography, climate, population, human activities, culture and pollution patterns are divergent at different mountain glaciers, thus regional studies should be encouraged to understand the role of pollutants on glaciers. On-site monitoring requires studying the regional aerosols behavior in mountain glaciers specially the most sensitive regions such as Sikkim Himalaya region. Sikkim Himalaya region has experienced a rise in temperature and an increase in glacial lakes number as well as area. This review paper suggests that the in-situ study of aerosols in ecologically sensitive mountain glaciers region is our utmost need in the current research time. As many glaciers are on the verge of disappearing and different types of aerosols deposition blamed for it at different places. The regional aerosol information may help in saving this precious natural reserve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Hugonnet R, McNabb R, Berthier E, Menounos B, Nuth C, Girod L, Farinotti D, Huss M, Dussaillant I, Brun F and Kääb A 2021 Accelerated global glacier mass loss in the early twenty-first century. Nature 592: 726–731

    Article  Google Scholar 

  2. Hindustan Times 2021 https://www.hindustantimes.com/videos/news/twostorey-house-collapses-into-sea-683in-argentina-video-goes-viral-101627785341323.html Accessed 13 September 2022

  3. Ding Y, Zhang S, Zhao L, Li Z and Kang S 2019 Global warming weakening the inherent stability of glaciers and permafrost. Sci. Bull. 64: 245–253

    Article  Google Scholar 

  4. Fang D and Yang J 2021 Drivers and critical supply chain paths of black carbon emission: A structural path decomposition. J. Environ. Manage. 278: 111514

    Article  Google Scholar 

  5. Kang S, Zhang Q, Qian Y, Ji Z and Li C 2019 Linking atmospheric pollution to cryospheric change in the Third Pole region: Current progress and future prospects. Natl. Sci. Rev. 6: 796–809

    Article  Google Scholar 

  6. Rowan A V 2018 Mountain glaciers under a changing climate. Geol. Today 34: 134–139

    Article  Google Scholar 

  7. Singh A S P and Thadani R 2015 Complexities and controversies in Himalayan research: A call for collaboration and rigor for better data. Int. Mt. Soc. 35: 401–409

    Google Scholar 

  8. Schild A 2008 ICIMOD’s position on climate change and mountain systems. Mt. Res. Dev. 28: 328–331

    Article  Google Scholar 

  9. Slater T, Lawrence I R, Otosaka I N, Shepherd A, Gourmelen N, Jakob L, Tepes P, Gilbert L and Nienow P 2021 Review article: Earth’s ice imbalance. Cryosphere 15: 233–246

    Article  Google Scholar 

  10. Li Z, Lau W K M, Ramanathan V, Wu G, Ding Y, Manoj M G, Liu J, Qian Y, Li J, Zhou T, Fan J, Rosenfeld D, Ming Y, Wang Y, Huang J, Wang B, Xu X, Lee S S, Cribb M, Zhang F, Yang X, Zhao C, Takemura T, Wang K, Xia X, Yin Y, Zhang H, Guo J, Zhai P M, Sugimoto N, Babu S S and Brasseur G P 2016 Aerosol and monsoon climate interactions over Asia. Rev. Geophys. 54: 866–929

    Article  Google Scholar 

  11. Gul C, Mahapatra P S, Kang S, Singh P K, Wu X, He C, Kumar R, Rai M, Xu Y and Puppala S P 2021 Black carbon concentration in the central Himalayas: Impact on glacier melt and potential source contribution. Environ. Pollut. 275: 116544

    Article  Google Scholar 

  12. Das S, Giorgi F, Giuliani G, Dey S and Coppola E 2020 Near-future anthropogenic aerosol emission scenarios and their direct radiative effects on the present-day characteristics of the Indian summer monsoon. J. Geophys. Res. Atmos. 125: 1–19

    Article  Google Scholar 

  13. Ojha N, Sharma A, Kumar M, Girach I, Ansari T U, Sharma S K, Singh N, Pozzer A and Gunthe S S 2020 On the widespread enhancement in fine particulate matter across the Indo-Gangetic Plain towards winter. Sci. Rep. 10: 1–9

    Article  Google Scholar 

  14. Ramanathan V, Ramana M V, Roberts G, Kim D, Corrigan C, Chung C and Winker D 2007 Warming trends in Asia amplified by brown cloud solar absorption. Nature 448: 575–578

    Article  Google Scholar 

  15. Bond T C, Doherty S J, Fahey D W, Forster P M, Berntsen T, Deangelo B J, Flanner M G, Ghan S, Kärcher B, Koch D, Kinne S, Kondo Y, Quinn P K, Sarofim M C, Schultz M G, Schulz M, Venkataraman C, Zhang H, Zhang S, Bellouin N, Guttikunda S K, Hopke P K, Jacobson M Z, Kaiser J W, Klimont Z, Lohmann U, Schwarz J P, Shindell D, Storelvmo T, Warren S G and Zender C S 2013 Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos. 118: 5380–5552

    Article  Google Scholar 

  16. Qian Y, Yasunari T J, Doherty S J, Flanner M G, Lau W K M, Jing M, Wang H, Wang M, Warren S G and Zhang R 2015 Light-absorbing particles in snow and ice: Measurement and modeling of climatic and hydrological impact. Adv. Atmos. Sci. 32: 64–91

    Article  Google Scholar 

  17. Neto N D M, Evangelista H, Condom T, Rabatel A and Ginot P 2019 Amazonian biomass burning enhances tropical andean glaciers melting. Nautre 9: 1–12

    Google Scholar 

  18. Telloli C, Chicca M and Pepi S 2018 Saharan dust particles in snow samples of Alps and Apennines during an exceptional event of transboundary air pollution. Environ. Monit. Assess. 37: 1–15

    Google Scholar 

  19. Senese A, Azzoni R S, Maragno D, D’Agata C, Fugazza D, Mosconi B, Trenti A, Meraldi E, Smiraglia C and Diolaiuti G 2020 The non-woven geotextiles as strategies for mitigating the impacts of climate change on glaciers. Cold Reg. Sci. Technol. 173: 103007

    Article  Google Scholar 

  20. Sharma G and Rai L K 2012 Climate change and sustainability of agrodiversity in traditional farming of the Sikkim Himalaya. In: Climate change in Sikkim-patterns, Impacts and initiatives. M L Arrawita. Sikkim. Information and Public Relations Department, Government of Sikkim, pp. 197–213

  21. Kulkarni A V and Karyakarte Y 2014 Observed changes in Himalayan glaciers. Curr. Sci. 106: 237–244

    Google Scholar 

  22. Stumm D, Sharad Prasad Joshi, Nadine Salzmann and Shalley M 2017 In situ monitoring of mountain glaciers. ICIMOD

  23. Mahapatra R 2019 Himalayan meltdown: Hindu Kush Himalayan region warming faster than global average. Down to Earth. https://www.downtoearth.org.in/news/climate-change/himalayan-meltdown-hindu-kush-himalayan-region-warming-faster-than-global-average-63078

  24. Gautam R, Hsu N C and Kafatos M 2009 Aerosol and rainfall variability over the Indian monsoon region: distributions, trends and coupling. Ann. Geophys. 27: 3691–3703

    Article  Google Scholar 

  25. Usha K H, Nair V S and Babu S S 2021 Effect of aerosol-induced snow darkening on the direct radiative effect of aerosols over the Himalayan region. Environ. Res. Lett. 16: 064004

    Article  Google Scholar 

  26. Kaspari S, Painter T H, Gysel M, Skiles S M and Schwikowski M 2014 Seasonal and elevational variations of black carbon and dust in snow and ice in the Solu-Khumbu, Nepal and estimated radiative forcings. Atmos. Chem. Phys. 14: 8089–8103

    Article  Google Scholar 

  27. Das L and Meher J K 2019 Earth-science reviews drivers of climate over the Western Himalayan region of India: A review. Earth-Sci. Rev. 198: 102935

    Article  Google Scholar 

  28. Arun B S, Gogoi M M, Borgohain A, Hegde P, Kundu S S and Babu S S 2021 Role of sulphate and carbonaceous aerosols on the radiative effects of aerosols over a remote high-altitude site Lachung in the Eastern Himalayas. Atmos. Res. 263: 105799

    Article  Google Scholar 

  29. Garg P K, Shukla A and Jasrotia A S 2019 On the strongly imbalanced state of glaciers in the Sikkim, eastern Himalaya, India. Sci. Total Environ. 691: 16–35

    Article  Google Scholar 

  30. Bhardwaj M A and S 2020 Temporal variation in Glacier’s area and identification of Glacial Lakes in Sikkim. In: Glaceology of Landscape Dynamics. Pp. 103–114

  31. https://www.eastmojo.com/sikkim/2020/06/28/sikkim-flash-floods-leave-a-trail-of-destruction-in-upper-dzongu/ (28-June-2020 reported by Pankaj Dhungel)

  32. Carminati E, Doglioni C and Scrocca D 2004 ALPS VS APENNINES. Ital. Geol. Soc. IGC 32 Florence 141–151

  33. Harrington H J 1951 Glacier wasting and retreat in the Southern Alps of New Zealand. J. Glaciol.

  34. Fitzharris B B and Chinn T 2019 Atmospheric circulation and ice volume changes for the small and medium glaciers of New Zealand ’ s Southern Alps mountain range 1977–2018. Int. J. Climatol. 39: 4274–4287

    Article  Google Scholar 

  35. Pelto M 2020 Glacier Retreat drives 400% Lake Expension Southern Alps, New Zealand 1990–2020. AGU Blog https://blogs.agu.org/fromaglaciersperspective/2020/03/15/glacier-retreat-drives-400-lake-expansion-southern-alps-new-zealand-1990-2020/

  36. Bertò M, Barbante C, Gabrieli J, Gabrielli P and Spolaor A 2016 Aerosol deposition (trace elements and black carbon) over the highest glacier of the Eastern European Alps during the last centuries. Geophys. Res. Abstr. EGU 18: 14210

    Google Scholar 

  37. Dussaillant I, Berthier E, Brun F, Masiokas M, Hugonnet R, Favier V and Rabatel A 2019 Two decades of glacier mass loss along the Andes. Nat. Geosci. 12: 802–808

    Article  Google Scholar 

  38. Cordova A M, Arévalo J, Marín J C, Baumgardner D, Raga G B, Pozo D, Ochoa C A and Rondanelli R 2015 On the transport of urban pollution in an Andean mountain valley on the transport of urban pollution in an Andean mountain valley. Aerosol Air Qual. Res. 10: 1–13

    Google Scholar 

  39. Alfonso J A, Cordero R R, Rowe P M, Nesh S, Casassa G, Carrasco J, Macdonell S, Lambert F, Pizarro J, Francisco F, Sarah F, Damiani A and Llanillo P 2019 Elemental and mineralogical composition of the western Andean snow (18 ° S – 41 ° S ). Nat. Sci. Reports 9: 1–13

    Google Scholar 

  40. Doherty S J, Warren S G, Grenfell T C, Clarke A D and Brandt R E 2010 Light-absorbing impurities in Arctic snow. Atmos. Chem. Phys. 10: 11647–11680. https://doi.org/10.5194/acp-10-11647-2010

    Article  Google Scholar 

  41. Hadley O L and Kirchstetter T W 2012 Black-carbon reduction of snow albedo. Nat. Clim. Change 2: 1–4. https://doi.org/10.1038/nclimate1433

    Article  Google Scholar 

  42. Hyslop N P 2009 Impaired visibility: the air pollution people see. Atmos. Environ. 43: 182–195

    Article  Google Scholar 

  43. Arnalds O, Dagsson-Waldhauserova P and Olafsson H 2016 The Icelandic volcanic aeolian environment: Processes and impacts—A review. Aeolian Res. 20: 176–195

    Article  Google Scholar 

  44. Moroni B, Arnalds O, Dagsson-Waldhauserová P, Crocchianti S, Vivani R and Cappelletti D 2018 Mineralogical and chemical records of Icelandic dust sources upon Ny-Ålesund (Svalbard Islands). Front. Earth Sci. 6: 1–13

    Article  Google Scholar 

  45. Walter W, van Beek L P H and Bierkens M F P 2010 Climate change will affect the Asian water towers. Science (80-) 328: 1382–1384

    Article  Google Scholar 

  46. Maurer J M, Schaefer J M, Rupper S and Corley A 2019 Acceleration of ice loss across the Himalayas over the past 40 years. Sci. Adv. 5: 1–12

    Article  Google Scholar 

  47. Shukla A, Garg P K and Srivastava S 2018 Evolution of glacial and high-altitude lakes in the Sikkim, Eastern Himalaya over the past four decades (1975–2017). Front. Env. Sci. 6: 1–19

    Article  Google Scholar 

  48. Srinivasan J, Krishnamoorthy K, Satheesh S K, Kulkarni A, Ramesh K J and Venketaraman C 2011 Black carbon research initiative—National Carbonaceous Aerosols Programme (NCAP)—Science Plan. GOI 3–40

  49. Williams M W 2013 The status of glaciers in the Hindu Kush-Himalayan region. Mt. Res. Dev. 33: 114–115

    Article  Google Scholar 

  50. Pandey A C, Ghosh S and Nathawat M S 2011 Evaluating patterns of temporal glacier changes in Greater Himalayan Range, Jammu & Kashmir, India. Geocarto. Int. 26: 321–338. https://doi.org/10.1080/10106049.2011.554611

    Article  Google Scholar 

  51. Rashid I, Majeed U, Aneaus S and Pelto M 2020 Linking the recent glacier retreat and depleting streamflow patterns with land system changes in Kashmir Himalaya, India. Water (Switzerland) 12(4): 1–18

    Google Scholar 

  52. Soni V K, Bist S, Bhatla R, Bhan S C and Kumar G 2018 Effect of unusual dust event on meteorological parameters & aerosol optical and radiative properties. MAUSAM 2: 227–242

    Article  Google Scholar 

  53. Mishra A K and Rafiq M 2017 Analyzing snowfall variability over two locations in Kashmir, India in the context of warming climate. Dyn. Atmos. Ocean 79: 1–9

    Article  Google Scholar 

  54. Koul M N 2018 The current stable phase of Ladakh Himalayan glaciers and the climate change effect: an overview of morphology and dynamics of drass glaciers. J. Indian Geomorphol. 6: 11–27

    Google Scholar 

  55. Chevuturi A, Dimri A P and Thayyen R J 2018 Climate change over Leh (Ladakh), India. Theor. Appl. Clim. 131: 531–545

    Article  Google Scholar 

  56. Thakur R C, Arun B S, Gogoi M M, Thamban M, Thayyen R J, Redkar B L and Suresh Babu S 2021 Multi-layer distribution of Black Carbon and inorganic ions in the snowpacks of western Himalayas and snow albedo forcing. Atmos. Environ. 261: 118564

    Article  Google Scholar 

  57. Rana R S, Bhagat R M, Kaliya V and Lal H 2008 ISPRS Archives XXXVIII-8/W3 Workshop proceedings: impact of climate change on agriculture impact of climate change on shift of apple belt in Himachal Pradesh. ISPRS Arch XXXVIII-8/W3 Workshop proceedings: impact of climate change, pp. 131–137

  58. Lynch C M, Barr I D, Mullan D and Ruffell A 2016 Rapid glacial retreat on the Kamchatka Peninsula during the early 21st Century. Artic Cryosph. Discuss. 10: 1809–1821

    Google Scholar 

  59. Bhutiyani M R, Organisation D, Kale V and Pawar N J 2007 Long-term trends in maximum, minimum and mean annual air temperatures across the Northwestern Himalaya during the twentieth century. Clim. Change 85: 159–177

    Article  Google Scholar 

  60. Kulkarni A V, Bahuguna I M, Centre S A, Rathore B P and Singh S K 2007 Glacial retreat in Himalaya using Indian remote sensing satellite data. Curr. Sci. 92: 69–74

    Google Scholar 

  61. Schmidt S, Nüsser M, Massif K Y and Schmidt S 2012 Changes of high altitude glaciers from 1969 to 2010 in the trans-Himalayan Kang Yatze Massif, Ladakh, Northwest India changes of high altitude glaciers from 1969 to 2010 in the Trans-Himalayan. Arctic. Antarct. Alp. Res. 44: 107–121

    Article  Google Scholar 

  62. Brahmbhatt R M, Bahuguna I M, Rathore B P, Kulkarni A V, Shah R D, Rajawat A S and Kargel J S 2017 Significance of glacio-morphological factors in glacier retreat: a case study of part of Chenab basin, Himalaya. J. Mt. Sci. 14: 128–141

    Article  Google Scholar 

  63. Bhambri R, Bolch T, Chaujar R K and Kulshreshtha S C 2011 Glacier changes in the Garhwal Himalaya, India, from 1968 to 2006 based on remote sensing. J. Glaciol. 57: 543–556

    Article  Google Scholar 

  64. Samjwal R, Bajracharya P K M and Shrestha B R 2006 The impact of global warming on the glaciers of the Himalaya. AIP Conf. Proc. 1871:231–242

  65. Bolch T, Buchroithner M, Pieczonka T and Kunert A 2008 Planimetric and volumetric glacier changes in the Khumbu Himal, Nepal, since 1962 using Corona, Landsat TM and ASTER data. J. Glaciol. 54: 592–600

    Article  Google Scholar 

  66. Basnett S, Kulkarni A V and Bolch T 2013 The influence of debris cover and glacial lakes on the recession of glaciers in Sikkim Himalaya, India. J. Glaciol. 59: 1035–1046

    Article  Google Scholar 

  67. Kaushal D, Kumar A, Yadav S and Tandon A 2018 Wintertime carbonaceous aerosols over Dhauladhar region of North-Western Himalayas. Environ. Sci. Pollut. Res. 25: 8044–8056

    Article  Google Scholar 

  68. Nainwal H C, Banerjee A, Shankar R, Semwal P and Sharma T 2016 Shrinkage of Satopanth and Bhagirath Kharak Glaciers, India, from 1936 to 2013. Ann. Glaciol. 57: 131–139. https://doi.org/10.3189/2016AoG71A015

    Article  Google Scholar 

  69. Bisht H, Kotlia B S, Kumar K, Joshi L M, Sah S K and Kukreti M 2020 Estimation of the recession rate of Gangotri glacier, Garhwal Himalaya (India) through kinematic GPS survey and satellite data. Environ. Earth Sci. 79: 1–14

    Article  Google Scholar 

  70. Dobhal D P, Mehta M and Srivastava D 2013 Influence of debris cover on terminus retreat and mass changes of Chorabari Glacier, Garhwal region, central Himalaya, India. J. Glaciol. 59: 961–971

    Article  Google Scholar 

  71. Dobhal D P, Gergan J T and Thayyen R J 2004 Recession and morphogeometrical changes of Dokriani glacier (1962–1995) Garhwal Himalaya, India. Curr. Sci. 86: 692–696

    Google Scholar 

  72. Kulkarni A V, Rathore B P, Singh S K, Bahuguna I M, Kulkarni A V, Rathore B P, Singh S K and Bahuguna I M 2011 Understanding changes in the Himalayan cryosphere using remote sensing techniques. J. Int. Remote Sens. ISSN 32: 601–614

    Article  Google Scholar 

  73. Gardelle J, Arnaud Y and Berthier E 2011 Contrasted evolution of glacial lakes along the Hindu Kush Himalaya mountain range between 1990 and 2009. Glob. Planet. Change 75: 47–55

    Article  Google Scholar 

  74. Kumar A, Singh S, Kumar N, Singh N, Kumar K, Mishra A K, Chourasiya S and Kushwaha H S 2021 Seasonal abundance and source attribution of carbonaceous aerosols at different altitude of mountainous locations in Uttarakhand Himalaya. Aerosol. Sci. Eng. 5: 233–246

    Article  Google Scholar 

  75. Sangewar C V and Shukla S P 2009 Inventory of the Himalayan Glaciers. Geological Survey of India Special Publication No. 34

  76. Racoviteanu A, Arnaud Y, Williams M and Manley W F 2014 Spatial patterns in glacier area and elevation changes from 1962 to 2006 in the monsoon-influenced eastern Himalaya. Cryosph. Discuss. 8: 3949–3998. https://doi.org/10.5194/tcd-8-3949-2014

    Article  Google Scholar 

  77. Luitel K K, Shrestha D G, N P S and R K S 2012 Impact of climate change on east-rathong glacier in rangit basin, west sikkim. In: Climate Change in Sikkim Patterns, Impacts and Initiatives. Information and Public Relations Department,Government of Sikkim, Gangtok, pp. 57–68

  78. Raj G B K, Kumar V K and Remya S N 2013 Remote sensing-based inventory of glacial lakes in Sikkim Himalaya: Semi-automated approach using satellite data. Geomatics. Nat. Hazards Risk 4: 241–253. https://doi.org/10.1080/19475705.2012.707153

    Article  Google Scholar 

  79. Raina V K 2009 Himalayan glaciers: A state-of-art review of glacial studies. In Glacial Retreat and Climate Change MoEF Discussion Paper, pp. 1–56

  80. Agrawal A, Sharma A R and Tayal S 2014 Assessment of regional climatic changes in the Eastern Himalayan region: a study using multi-satellite remote sensing data sets. Environ. Monit. Assess. 186: 6521–6536. https://doi.org/10.1007/s10661-014-3871-x

    Article  Google Scholar 

  81. Yadav J S, Tiwari S K, Misra A, Rai S K and Yadav R K 2021 High-altitude meteorology of Indian Himalayan region: complexities, effects, and resolutions. Environ. Monit. Assess. 193: 1–29

    Article  Google Scholar 

  82. Sarangi C, Qian Y, Rittger K, Bormann K J, Liu Y, Wang H, Wan H, Lin G and Painter T H 2019 Impact of light-absorbing particles on snow albedo dark-ening and associated radiative forcing over high-mountain Asia: high-resolution WRF-Chem modeling and new satellite observations. Atmos. Chem. Phys. 19: 7105–7128

    Article  Google Scholar 

  83. Ji Z, Kang S, Zhang Q, Cong Z, Chen P and Sil-lanpää M 2016 Investigation of mineral aerosols radiative effects over Hihg Mountain Asia in 1990–2009 using a regional climate model. Atmos. Res. 178–179: 484–496

    Article  Google Scholar 

  84. Zhang Y, Kang S, Sprenger M, Cong Z, Gao T, Li C and Tao S 2018 Black carbon and mineral dust in snow cover on the Tibetan Plateau. Cryosphere 12: 413–431

    Article  Google Scholar 

  85. Zhong X, Kang S, Zhang W, Yang J, Li X, Zhang Y, Liu Y and Chen P 2019 Light absorbing impuritis in snow cover across Northern Xinijiang, China. J. Glaciol. 210: 1–18

    Google Scholar 

  86. IPCC Climate Change 2013 The physical science basis

  87. Namazi M, Von Salzen K and Cole J N S 2015 Simulation of black carbon in snow and its climate impact in the Canadian Global Climate Model. Atmos. Chem. Phys. 15(13): 10887–10904

    Article  Google Scholar 

  88. Kaspari SD, Schwikowski M, Gysel M, Flanner MG, Kang S, Hou S and Mayewski PA 2011 Recent increase in black carbon concentrations from a Mt. Everest ice core spanning 1860-2000 AD. Geophys. Res. Lett. 38: 1–6

  89. Zhang R, Wang H, Hegg D A, Qian Y, Doherty S J, Dang C, Ma P, Rasch P J and Fu Q 2015 Quantifying sources of black carbon in western North America using observationally based analysis and an emission tagging. Atmos. Chem. Phys. 15: 12805–12822

    Article  Google Scholar 

  90. Thind P S, Chandel K K, Sharma S K, Mandal T K and John S 2019 Light-absorbing impurities in snow of the Indian Western Himalayas: impact on snow albedo, radiative forcing, and enhanced melting. Environ. Sci. Poll. Res. 26(28): 7566–7578

    Article  Google Scholar 

  91. Wang M, Xu B, Cao J, Tie X, Wang H, Zhang R, Qian Y, Rasch P J, Zhao S, Wu G, Zhao H, Joswiak D R, Li J and Xie Y 2015 Carbonaceous aerosols recorded in a southeastern Tibetan glacier: analysis of temporal variations and model estimates of sources and radiative forcing. Atmos. Chem. Phys. 15: 1191–1204

    Article  Google Scholar 

  92. Qu B, Ming J, Kang S, Zhang G, Li Y, Li C, Zhao S, Ji Z and Cao J 2014 The decreasing albedo of the Zhadang glacier on western Nyainqentanglha and the role of light-absorbing impurities. Atmos. Chem. Phys. 14: 11117–11128. https://doi.org/10.5194/acp-14-11117-2014

    Article  Google Scholar 

  93. Li Z, Wang Y, Guo J, Zhao C, Cribb M C, Dong X, Fan J, Gong D, Huang J, Jiang M and Jiang Y 2019 East Asian study of tropospheric aerosols and their impact on regional clouds, precipitation, and climate (EAST-AIRCPC). J. Geophys. Res. Atmos. 124: 13026–13054

    Article  Google Scholar 

  94. Singh S, Kansal M L 2022 Cloudburst—A Major Disaster in The Indian Himalayan States. In: Kolathayar S, Pal I, Chian SC, Mondal A (eds) Civil Engineering for Disaster Risk Reduction. Springer Tracts in Civil Engineering. Springer, Singapore

  95. Singh P, Sarawade P and Adhikary B 2021 Vertical distribution of aerosols during deep-convective event in the Himalaya using WRF-chem model at convection permitting scale. Atmosphere 12(9): 1092

    Article  Google Scholar 

  96. Froude Melanie J and Petley D N 2018 Global fatal landslide occurrence 2004 to 2016. Nat. Hazards Earth Syst. Sci. 18: 2161–2181

    Article  Google Scholar 

  97. Dikshit A, Sarkar R, Pradhan B and Segoni S 2020 Rainfall induced landslide studies in Indian Himalayan region: a critical review. Appl. Sci. 10: 1–24

    Article  Google Scholar 

  98. Mondal S and Mandal S 2019 Landslide susceptibility mapping of Darjeeling Himalaya, India using index of entropy (IOE) model. Appl. Geomatics 11: 129–146. https://doi.org/10.1007/s12518-018-0248-9

    Article  Google Scholar 

  99. Anbarasu K, Sengupta A, Gupta S and Sharma S P 2010 Mechanism of activation of the Lanta Khola landslide in Sikkim Himalayas. Landslides 7: 135–147. https://doi.org/10.1007/s10346-009-0193-0

    Article  Google Scholar 

  100. Bera A, Mukhopadhyay B P and Das D 2019 Landslide hazard zonation mapping using multi-criteria analysis with the help of GIS techniques: a case study from Eastern Himalayas, Namchi, South Sikkim. Nat. Hazards 96: 935–959

    Article  Google Scholar 

  101. Sharma S P, Anbarasu K, Gupta S and Sengupta A 2010 Integrated very low-frequency EM, electrical resistivity, and geological studies on the Lanta Khola landslide, North Sikkim, India. Landslides 7: 43–53

    Article  Google Scholar 

  102. Anbalagan R, Kumar R, Lakshmanan K, Parida S and Neethu S 2015 Landslide hazard zonation mapping using frequency ratio and fuzzy logic approach, a case study of Lachung Valley, Sikkim. Geoenviron. Disasters 2: 1–17

    Article  Google Scholar 

  103. Remya S N, Kulkarni A V, Pradeep S and Shrestha D G 2019 Volume estimation of existing and potential glacier lakes, Sikkim Himalaya, India. Curr. Sci. 116: 1–8

    Article  Google Scholar 

  104. Aggarwal S, Rai S C, Thakur P K and Emmer A 2017 Inventory and recently increasing GLOF susceptibility of glacial lakes in Sikkim, Eastern Himalaya. Geomorphology 295: 39–54

    Article  Google Scholar 

  105. Banerjee A, Chakraborty P and Bandopadhyay R 2019 Urgent conservation needs in the Sikkim Himalaya biodiversity hotspot. Biodiversity 20: 88–97

    Article  Google Scholar 

  106. Sekercioglu C H, Schneider S H, Fay J P and Loarie S R 2008 Climate change, elevational range shifts, and bird extinctions. Conserv. Biol. 22: 140–150

    Article  Google Scholar 

  107. Acharya B and Chettri B 2012 Effect of climate change on birds, herpetofauna and butterflies in Sikkim Himalaya: a preliminary investigation. In Climate Change in Sikkim Patterns, Impacts and Initiatives. Information and Public Relations Department, Government of Sikkim, Gangtok, pp. 141–160

  108. Bull J J 2008 Sex determination: Are two mechanisms better than one? J. Biosci. 33: 5–8

    Article  Google Scholar 

  109. Henle K, Dick D, Harpke A, Kühn Ingolf and Schweiger O 2008 Climate change impacts on European amphibians and reptiles. In Convention on the conser vation of European wildlife and natural habitats. Strasbourg, Reading, pp. 1–51

  110. Waltner R C 1973 Geographical and altitudinal distribution of amphibians and reptiles in the Himalayas (Part III). Cheetal 16: 14–19

    Google Scholar 

  111. Vezzoli G and Lombardo B F R 2017 Petrology of the Tista and Rangit river sands ( Sikkim, India ). Ital. J. Geosci. 136: 103–109. https://doi.org/10.3301/IJG.2016.04

    Article  Google Scholar 

  112. Harilal G T, Madhu D, Ramesh M V and Pullarkatt D 2019 Towards establishing rainfall thresholds for a real-time landslide early warning system in Sikkim, India. Landslides 16: 2395–2408

    Article  Google Scholar 

  113. Lau W K M, Kim K M, Shi J J, Matsui T, Chin M, Tan Q, Lidard C P and Tao W K 2017 Impacts of aerosol—monsoon interaction on rainfall and circulation over Northern India and the Himalaya Foothills. Clim. Dyn. 49: 1945–1960

    Article  Google Scholar 

  114. Xu J, Grumbine R E, Shrestha A, Eriksson M, Yang X, Wang Y and Wilkes A 2009 The melting Himalayas: Cascading effects of climate change on water, biodiversity, and livelihoods. Conserv. Biol. 23: 520–530

    Article  Google Scholar 

  115. Şekercioĝlu çaĝan H, Primack R B and Wormworth J 2012 The effects of climate change on tropical birds. Biol. Conserv. 148:1–18

  116. Shugar D H, Burr A, Haritashya U K, Kargel J S, Watson C S, Kennedy M C, Bevington A R, Betts R A and Harrison S 2018 Rapid worldwide growth of glacial lakes since 1990. Nat. Clim. Change 10: 939–945

    Article  Google Scholar 

  117. Wang X, Heald C L, Liu J, Weber R J, Jost P C, Jimenez J L, Schwarz J P and Perring A E 2018 Exploring the observational constraints on the simulation of brown carbon. Atmos. Chem. Phys. 18: 635–653

    Article  Google Scholar 

  118. Carslaw K S, Lee L A, Reddington C L, Pringle K J, Rap A, Forster P M, Mann G W, Spracklen D V, Woodhouse M T, Regayre L A and Pierce J R 2013 Large contribution of natural aerosols to uncertainty in indirect forcing. Nature 503: 67–71

    Article  Google Scholar 

Download references

Acknowledgements

The Work was funded by the Department of Science and Technology (DST), India through Women Scientist Scheme (WoS-B) grant (grant no. DST/WOS-B/AFE-35/2021 (G)) to the first author. The Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) data used in this study have been provided by the Global Modelling and Assimilation Office (GMAO) at NASA Goddard Space Flight Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirban Middey.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, S., Middey, A. A comprehensive appraisal on the effect of aerosol on mountain glaciers: special reference to Sikkim Himalayan region of India. Sādhanā 48, 50 (2023). https://doi.org/10.1007/s12046-023-02097-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12046-023-02097-0

Keywords

Navigation