Skip to main content
Log in

Scour downstream of stepped-baffle weirs in wide rivers

  • Published:
Sādhanā Aims and scope Submit manuscript

Abstract

In this study, the effect of the structure geometry, the bed material, and the river hydraulic conditions on the scour morphology downstream of the stepped-baffle weirs are experimentally investigated. All experiments are conducted in clear water conditions (no sediment transport). Results show, that in the presence of stepped-baffle weirs, the maximum scour depth diminishes with respect to the simple stepped weirs (no baffle) highlighting that increasing the tailwater depth, decreases the maximum scour depth, and decreasing the structure slope, decreases the maximum scour depth. By means of dimensional analysis and incomplete self-similarity, a formula is proposed to predict the maximum scour depth downstream of a stepped-baffle weir considering all aspect ratios of the structure geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

B :

Channel and stepped weir width

b x :

Baffle width

D :

Pier diameter

d 50 :

Stilling basin median particle diameter

D h :

Hydraulic depth

D h = y 0 :

Upstream approach flow depth that the maximum observed y0 = yt + Δy

d s :

Maximum scour depth

f:

Functional symbol

Fd :

Particle Froude number

g :

Gravity acceleration

G s :

Relative density of bed material

h stp :

Height of each step

h x :

Baffle height

k :

Number of distances between baffles

l stp :

Length of each step

l x :

Baffle length

m :

Number of basic dimensions

n :

Number of dimensional variables of the original function and

P :

Structure height

Q :

Discharge.

R = VD h/υ :

Reynolds number

t :

Scour development time,

t*:

Dimensionless time for scouring downstream of the bridge piers

T*:

Dimensionless time for scouring downstream of the stepped weir

V :

Upstream approach flow velocity

w x :

Distance between baffles

W x = k w x :

Total distance between baffles

y t :

Tailwater depth

Δy :

Difference between water surface elevation upstream and downstream of stepped weir

η = Fd 2 Δy/P :

Scour self-similar parameter downstream

ρ :

Water density

ρ s :

Stilling basin bed material density

υ :

Kinematic viscosity

Ω:

Functional symbol

References

  1. Bormann N E and Julien P Y 1991 Scour downstream of grade control structures. J. Hydraul. Eng. 117(5): 579–594

    Article  Google Scholar 

  2. D’Agostino V and Ferro V 2004 Scour on alluvial bed downstream of grade control structures. J. Hydraul. Eng. 130(1): 24–37

    Article  Google Scholar 

  3. Ben Meftah M and Mossa M 2006 Scour holes downstream of bed sills in low gradient channels. J. Hydraul. Res. 44(4): 497–509

    Article  Google Scholar 

  4. Dey S and Raikar R V 2007 Scour below a high vertical drop. J. Hydraul. Eng. 133(5): 564–568

    Article  Google Scholar 

  5. Bhuiyan F, Hey R D and Wormleaton P R 2007 Hydraulic evaluation of W-weir for river restoration. J. Hydraul. Eng. 133(6): 596–609

    Article  Google Scholar 

  6. Chinnarasri C, Donjadee S and Israngkura U 2008 Hydraulic characteristics of gabion-stepped weirs. J. Hydraul. Eng. 134(8): 1147–1152

    Article  Google Scholar 

  7. Pagliara S, Kurdistani S M and Roshni T 2011 Rooster tail wave hydraulics of chutes. J. Hydraul. Eng. 133(9): 1085–1088

    Article  Google Scholar 

  8. Pagliara S and Kurdistani S M 2013 Scour downstream of cross-vane structures. J. Hydro-environ. Res. 7(4): 236–242

    Article  Google Scholar 

  9. Pagliara S and Kurdistani S M 2014 Scour characteristics downstream of grade-control structures River Flow 2014. Schleiss et al (Eds). 2093–2098. Taylor & Francis Group. London

  10. Scurlock S M, Cristopher L T and Steven R A 2012 Equilibrium scour downstream of three-dimensional grade control structures. J. Hydraul. Eng 138(2): 167–176

    Article  Google Scholar 

  11. Kurdistani S M and Pagliara S 2015 Scour characteristics downstream of grade-control structures: Log-vane and log-deflectors comparison. World Environmental and Water Resources Congress 2015: Floods, Droughts, and Ecosystems, ASCE, Reston, VA, 1831–1840

  12. Kurdistani S M and Pagliara S 2017 Experimental study on cross-vane scour morphology in curved horizontal channels. J. Irrig. Drain. Eng. 143(7): 1–9

    Article  Google Scholar 

  13. Khosronejad A, Kozarek J L, Diplas P, Hill Jha R, Chatanantavet P, Heydari N and Sotiropoulos F 2018 Simulation-based optimization of in-stream structures design: rock vanes. Environ. Fluid Mech. 18(3): 695–738

    Article  Google Scholar 

  14. Guan D, Liu J, Chiew Y M and Zhou Y 2019 Scour evolution downstream of submerged weirs in clear water scour conditions. Water (Switzerland). 11(9): 1746

    Google Scholar 

  15. Wang L, Melville B W and Guan D 2018 Effects of upstream weir slope on local scour at submerged weirs. J. Hydraul. Eng. 144(3): 04018002

    Article  Google Scholar 

  16. Wang L, Melville B W, Guan D and Whittaker C N 2018 Local scour at downstream sloped submerged weirs. J. Hydraul. Eng. 144(8): 04018044

    Article  Google Scholar 

  17. Wang L, Melville B W, Whittaker C N and Guan D 2019 Scour estimation downstream of submerged weirs. J. Hydraul. Eng. 145(12): 06019016

    Article  Google Scholar 

  18. Wang L, Melville B W, Whittaker C N and Guan D 2020 Temporal evolution of clear-water scour depth at submerged weirs. J. Hydraul. Eng. 146(3): 06020001

    Article  Google Scholar 

  19. Azimi A H, Shabanlou S, Yosefvand F, Rajabi A and Yaghoubi B 2020 Estimation of scour depth around cross-vane structures using a novel non-tuned high-accuracy machine learning approach. Sadhana Acad. Proc. Eng. Sci. 45(1): 152

    Google Scholar 

  20. Shahbazbeygi E, Yosefvand F, Yaghoubi B, Shabanlou S and Rajabi A 2021 Generalized structure of group method of data handling to prognosticate scour around various cross-vane structures. Arab. J. Geosci. 14(12): 1121

    Article  Google Scholar 

  21. Roy D, Pagliara S and Palermo M 2021 Experimental analysis of scour features at chevrons in a straight channel. Water (Switzerland). 13(7): 971

    Google Scholar 

  22. Melville B W, Yang Y, Xiong X, Ettema R and Nowroozpour A 2021 Effects of streamwise abutment length on scour at riprap apron-protected setback abutments in compound channels. J. Hydraul. Eng. 147(3): 04021003

    Article  Google Scholar 

  23. Chanson H 1994 Hydraulics of skimming flows over stepped channels and spillways. J. Hydraul. Res. 32(3): 445–460

    Article  Google Scholar 

  24. Ohtsu I, Yasuda Y and Takahashi M 2004 Flow characteristics of skimming flows in stepped channels. J. Hydraul. Eng. 130(9): 860–869

    Article  Google Scholar 

  25. Pagliara S and Palermo M 2013 Rock grade control structures and stepped gabion weirs: scour analysis and flow features. Acta Geophys. 61(1): 126–150

    Article  Google Scholar 

  26. Pagliara S, Palermo M, Kurdistani S M and Hassanabadi L S 2015 Erosive and hydrodynamic processes analysis downstream of low-head rock made control structures. J. App. Water Eng. Res. 3(2): 122–131

    Article  Google Scholar 

  27. Zhang G and Chanson H 2016 Gabion stepped spillway: interactions between free-surface, cavity, and seepage flows. J. Hydraul. Eng. 142(5): 06016002-1–5

    Article  Google Scholar 

  28. Pandey M, Oliveto G, Pu J H, Sharma P K and Ojha C S P 2020 Pier scour prediction in non-uniform gravel beds. Water 12(1696): 1–21

    Google Scholar 

  29. Garg V, Setia B, Singh V and Kumar A 2021 Scour protection around bridge pier and two-piers-in-tandem arrangement. ISH Journal of Hydraulic Engineering. 1–13

  30. Pandey M, Jamei M, Karbasi M, Ahmadianfar I and Xuefeng C 2021 Prediction of maximum scour depth near spur dikes in uniform bed sediment using stacked generalization ensemble tree-based frameworks. J. Irrig. Drain. Eng. 147(11): 1–9

    Article  Google Scholar 

  31. Jain R, Lodhi A S, Oliveto G and Pandey M 2021 Influence of cohesion on scour at piers founded in clay–sand–gravel mixtures. J. Irrig. Drain. Eng. 147(10): 1–9

    Article  Google Scholar 

  32. Shan J and Toth C K 2018 Topographic laser ranging and scanning: Principles and processing. CRC Press, Taylor & Francis Group, Boca Raton, FL, USA. ISBN 9781498772273

  33. Chen J G, Zhang J M, Xu W L and Wang Y R 2010 Scale effects of air-water flows in stilling basin of multi-horizontal submerged jets. J. Hydrodyn. 22(6): 788–795

    Article  Google Scholar 

  34. Whitehouse R J S and Chesher T J 1994 Seabed roughness in tidal flows - a review of existing measurements. Report SR360, HR Wallingford Ltd

  35. Melville B W and Chiew Y M 1999 Time scale for local scour at bridge piers. J. Hydraul. Eng. 125(1): 59–65

    Article  Google Scholar 

  36. Esmaeili Varaki M, Kurdistani S M and Noormohammadi G 2021 Scour morphology downstream of submerged block ramps. J. App. Water Eng. Res.. https://doi.org/10.1080/23249676.2021.1908918

    Article  Google Scholar 

  37. Barenblatt G I 1987 Dimensional analysis. Gordon and Breach Science, New York

    Google Scholar 

  38. Kurdistani S M, Tomasicchio G R and D’AlessandroHassanabadi F L 2019 River bank protection from ship-induced waves and river flow. Water Sci. Eng. 12(2): 129–135

    Article  Google Scholar 

  39. Kurdistani S M, Aristodemo F, Francone A, Tripepi G and Tomasicchio G R 2021 Formula for the maximum reference pressure at the interface of the breakwater core and filter layer. Coast. Eng. J. 63(4): 532–544

    Article  Google Scholar 

  40. Tomasicchio G R, Kurdistani S M, D’Alessandro F and Hassanabadi L 2020 Simple wave breaking depth index formula for regular waves. J. Waterway Port Coastal Ocean Eng. 146(1): 06019001

    Article  Google Scholar 

  41. Tomasicchio G R and Kurdistani S M 2020 New prediction formula for pore pressure distribution inside rubble-mound breakwater core. J. Waterway Port Coastal Ocean Eng. 146(3): 04020005

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Esmaeili Varaki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurdistani, S.M., Varaki, M.E. & Larsari, Z.K. Scour downstream of stepped-baffle weirs in wide rivers. Sādhanā 47, 178 (2022). https://doi.org/10.1007/s12046-022-01961-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12046-022-01961-9

Keywords

Navigation