Skip to main content
Log in

Dynamic modeling of dielectric elastomer-based minimum energy structures with membrane entanglements and finite extensibility

  • Published:
Sādhanā Aims and scope Submit manuscript

Abstract

The shape morphing behavior of dielectric elastomer-based minimum energy structures (DEMES) generated by combining an inextensible frame and a pre-stretched dielectric elastomer membrane is unique. The geometrical and material properties of the DE membrane and compliant frame are responsible for the DEMES actuator’s shape morphing capabilities. The internal polymer networks of the dielectric elastomer have strong perplexed entanglements and finite extensibility that alter significantly the dynamic behavior of the DE membrane. In this paper, we present a theoretical framework for investigating the impact of intrinsic entanglements and finite extensibility of the dielectric elastomer polymer networks on the DEMES actuator’s nonlinear dynamic performance. The nonlinear equation that governs the dynamic motion of the DEMES actuator is obtained by employing the least action principle-based Euler-Lagrange’s equation. The main results of the present work prove that the attained initial (equilibrium) and final configurations of the DEMES actuator are altered appreciably by the entanglements and finite extensibility of the polymer chains of the DE membrane. A parametric investigation reveals that the initial pre-stretch associated with the DE membrane and bending stiffness of the compliant frame governs the acquired equilibrium configuration of the DEMES actuator. The framework established provides a constructive platform for integrating the microcosmic features of the DE membrane polymer chains with the macroscopic dynamic behavior of the DEMES actuator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Kumar D and Sarangi S 2019 Dynamic modeling of a dielectric elastomeric spherical actuator: an energy-based approach. Soft Mater. 1–10

  2. Sharma A K , Kumar P, Singh A, Joglekar D M and Joglekar M M 2019 Electromechanical instability of dielectric elastomer actuators with active and inactive electric regions. J. Appl. Mech. 86(6)

  3. Sharma A K, Arora N and Joglekar M M 2018 Dc dynamic pull-in instability of a dielectric elastomer balloon: an energy-based approach. Proc. R. Soc. A Math. Phys. Eng. Sci. 474(2211): 20170900

    MathSciNet  MATH  Google Scholar 

  4. Khurana A, Joglekar M M and Zurlo G 2022 Electromechanical stability of wrinkled dielectric elastomers. Int. J. Solids Struct. 246: 111613

  5. Kumar A, Khurana A, Sharma A K and Joglekar M M 2022 Dynamics of pneumatically coupled visco-hyperelastic dielectric elastomer actuators: theoretical modeling and experimental investigation. Eur. J. Mech. A/Solids 95: 104636

    Article  MathSciNet  Google Scholar 

  6. Kofod G, Paajanen M and Bauer S 2006 Self-organized minimum-energy structures for dielectric elastomer actuators. Appl. Phys. A 85(2): 141–143

    Article  Google Scholar 

  7. Kofod G, Wirges W, Paajanen M and Bauer S 2007 Energy minimization for self-organized structure formation and actuation. Appl. Phys. Lett. 90(8): 081916

    Article  Google Scholar 

  8. Khurana A, Kumar A, Raut S K, Sharma A K and Joglekar M M 2021 Effect of viscoelasticity on the nonlinear dynamic behavior of dielectric elastomer minimum energy structures. Int. J. Solids Struct. 208: 141–153

    Article  Google Scholar 

  9. Rosset S, Araromi O A, Shintake J and Shea H R 2014 Model and design of dielectric elastomer minimum energy structures. Smart Mater. Struct. 23(8): 085021

    Article  Google Scholar 

  10. Lau G-K, Heng K-R, Ahmed A S and Shrestha M 2017 Dielectric elastomer fingers for versatile grasping and nimble pinching. Appl. Phys. Lett. 110(18): 182906

    Article  Google Scholar 

  11. Zhao J, Niu J, McCoul D, Leng J and Pei Q 2015 A rotary joint for a flapping wing actuated by dielectric elastomers: design and experiment. Meccanica 50(11): 2815–2824

    Article  Google Scholar 

  12. Follador M, Conn A T and Rossiter J 2015 Bistable minimum energy structures (BiMES) for binary robotics. Smart Mater. Struct. 24(6): 065037

    Article  Google Scholar 

  13. Li W-B, Zhang W-M, Zou H-X, Peng Z-K and Meng G 2017 A novel variable stiffness mechanism for dielectric elastomer actuators. Smart Mater. Struct. 26(8): 085033

    Article  Google Scholar 

  14. Gangwar A S, Agrawal Y and Joglekar D M 2021 Nonlinear interactions of lamb waves with a delamination in composite laminates. J. Nondestruct. Eval. Diagn. Progn. Eng. Syst. 4(3)

  15. Agrawal Y, Gangwar A S and Joglekar D M 2022 Localization of a breathing delamination using nonlinear lamb wave mixing. J. Nondestruct. Eval. Diagn. Progn. Eng. Syst. 5(3)

  16. Gour S, Kumar D and Khurana A 2022 Constitutive modeling for the tear fracture of artificial tissues in human-like soft robots. Eur. J. Mech. A/Solids 96: 104672

  17. Sharma A K and Joglekar M M 2019 A computationally efficient locking free numerical framework for modeling visco-hyperelastic dielectric elastomers. Comput. Methods Appl. Mech. Eng. 352: 625–653

    Article  MathSciNet  Google Scholar 

  18. Sharma A K and Joglekar M M 2019 A numerical framework for modeling anisotropic dielectric elastomers. Comput. Methods Appl. Mech. Eng. 344: 402–420

    Article  MathSciNet  Google Scholar 

  19. Sharma A K and Joglekar M M 2018 Effect of anisotropy on the dynamic electromechanical instability of a dielectric elastomer actuator Smart Mater. Struct. 28(1): 015006

    Article  Google Scholar 

  20. Sharma A K, Khurana A and Joglekar M M 2021 A finite element model for investigating the thermo-electro-mechanical response of inhomogeneously deforming dielectric elastomer actuators. Eur. J. Comput. Mech. 387–408

  21. Alam Z and Sharma A K 2022 Functionally graded soft dielectric elastomer phononic crystals: finite deformation, electro-elastic longitudinal waves, and band gaps tunability via electro-mechanical loading. Int. J. Appl. Mech. 14(5): 2250050

  22. Vatanjou H, Hojjat Y and Karafi M 2019 Nonlinear dynamic analysis of dielectric elastomer minimum energy structures. Appl. Phys. A 125(9): 1–11

    Article  Google Scholar 

  23. Khurana A, Patra A K and Joglekar M M 2022 An energy-based model of dielectric elastomer minimum energy structures with stiffeners: equilibrium configuration and the electromechanical response. Mech. Adv. Mater. Struct. 1–19

  24. O’Brien B, McKay T, Calius E, Xie S and Anderson I 2009 Finite element modelling of dielectric elastomer minimum energy structures. Appl. Phys. A 94(3): 507–514

    Article  Google Scholar 

  25. Zhao J, Niu J, McCoul D, Ren Z and Pei Q 2015 Phenomena of nonlinear oscillation and special resonance of a dielectric elastomer minimum energy structure rotary joint. Appl. Phys. Lett. 106(13): 133504

    Article  Google Scholar 

  26. Zhao J, Wang S, Xing Z, McCoul D, Niu J, Huang B, Liu L and Leng J 2016 Equivalent dynamic model of demes rotary joint. Smart Mater. Struct. 25(7): 075025

    Article  Google Scholar 

  27. Khurana A, Sharma A K and Joglekar M M 2021 Nonlinear oscillations of electrically driven aniso-visco-hyperelastic dielectric elastomer minimum energy structures. Nonlinear Dyn. 104(3): 1991–2013

    Article  Google Scholar 

  28. Davidson J D and Goulbourne N C 2013 A nonaffine network model for elastomers undergoing finite deformations. J. Mech. Phys. Solids 61(8): 1784–1797

    Article  Google Scholar 

  29. Zhu J and Luo J 2017 Effect of entanglements on the electromechanical stability of dielectric elastomers. EPL (Europhys. Lett.) 119(2): 26003

    Article  Google Scholar 

  30. Li B, Zhang J, Chen H and Li D 2016 Voltage-induced pinnacle response in the dynamics of dielectric elastomers. Phys. Rev. E 93(5): 052506

    Article  Google Scholar 

  31. Zhu J, Luo J and Xiao Z 2018 Snap-through instability analysis of dielectric elastomers with consideration of chain entanglements. Mater. Res. Express 5(6): 065307

    Article  Google Scholar 

  32. Zhang J, Chen H and Li D 2018 Modeling nonlinear dynamic properties of dielectric elastomers with various crosslinks, entanglements, and finite deformations. J. Appl. Phys. 123(8): 084901

    Article  Google Scholar 

  33. Shintake J, Rosset S, Floreano D and Shea H R 2013 Effect of mechanical parameters on dielectric elastomer minimum energy structures. In: Electroactive Polymer Actuators and Devices (EAPAD) 2013, vol. 8687, p. 86872V. International Society for Optics and Photonics

  34. Araromi O A, Gavrilovich I, Shintake J, Rosset S, Richard M, Gass V and Shea H R 2014 Rollable multisegment dielectric elastomer minimum energy structures for a deployable microsatellite gripper. IEEE/ASME Trans. Mechatron. 20(1): 438–446

    Article  Google Scholar 

  35. Qu S, Li K, Li T, Jiang H, Wang M and Li Z 2012 Rate dependent stress-stretch relation of dielectric elastomers subjected to pure shear like loading and electric field. Acta Mech. Solida Sin. 25(5): 542–549

    Article  Google Scholar 

  36. Chen Y, Kang G, Yuan J and Li T 2019 Experimental study on pure-shear-like cyclic deformation of VHB 4910 dielectric elastomer. J. Polym. Res. 26(8): 1–15

    Article  Google Scholar 

  37. Sharma A K, Joglekar M M, Joglekar D M and Alam Z 2022 Topology optimization of soft compressible phononic laminates for widening the mechanically tunable band gaps. Compos. Struct. 115389

  38. Sharma A K, Sheshkar N and Gupta A 2021 Static and dynamic stability of dielectric elastomer fiber composites. Mater. Today Proc. 44: 2043–2047

    Article  Google Scholar 

  39. Kashyap K, Sharma A K and Joglekar M M 2020 Nonlinear dynamic analysis of aniso-visco-hyperelastic dielectric elastomer actuators. Smart Mater. Struct. 29(5): 055014

    Article  Google Scholar 

  40. Joglekar M M 2014 An energy-based approach to extract the dynamic instability parameters of dielectric elastomer actuators. J. Appl. Mech. 81(9)

  41. Joglekar M M 2015 Dynamic-instability parameters of dielectric elastomer actuators with equal biaxial prestress. AIAA J. 53(10): 3129–3133

    Article  Google Scholar 

  42. Sharma A K 2020 Design of a command-shaping scheme for mitigating residual vibrations in dielectric elastomer actuators. J. Appl. Mech. 87(2)

  43. Sharma A K, Kosta M, Shmuel G and Amir O 2022 Gradient-based topology optimization of soft dielectrics as tunable phononic crystals. Compos. Struct. 280: 114846

    Article  Google Scholar 

  44. Khurana A, Kumar D, Sharma A K and Joglekar M M 2021 Nonlinear oscillations of particle-reinforced electro-magneto-viscoelastomer actuators. J. Appl. Mech. 88(12): 121002

    Article  Google Scholar 

  45. Sharma A K, Bajpayee S, Joglekar D M and Joglekar M M 2017 Dynamic instability of dielectric elastomer actuators subjected to unequal biaxial prestress. Smart Mater. Struct. 26(11): 115019

    Article  Google Scholar 

  46. Khurana A, Kumar D, Sharma A K and Joglekar M M 2022 Static and dynamic instability modeling of electro-magneto-active polymers with various entanglements and crosslinks. Int. J. Non-Linear Mech. 139: 103865

    Article  Google Scholar 

  47. Khurana A, Kumar A, Sharma A K and Joglekar M M 2021 Effect of polymer chains entanglements, crosslinks and finite extensibility on the nonlinear dynamic oscillations of dielectric viscoelastomer actuators. Nonlinear Dyn. 104(2): 1227–1251

  48. Zhao J, Wang S, McCoul D, Xing Z, Huang B, Liu L and Leng J 2016 Bistable dielectric elastomer minimum energy structures. Smart Mater. Struct. 25(7): 075016

    Article  Google Scholar 

  49. Xu B-X, Mueller R, Theis A, Klassen M and Gross D 2012 Dynamic analysis of dielectric elastomer actuators. Appl. Phys. Lett. 100(11): 112903

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous reviewer for their insightful comments. Authors acknowledge the financial support from Science and Engineering Research Board (SERB), India through Start-up Research Grant (SRG/2021/000776).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Atul Kumar Sharma or M. M. Joglekar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khurana, A., Kumar, A., Sharma, A.K. et al. Dynamic modeling of dielectric elastomer-based minimum energy structures with membrane entanglements and finite extensibility. Sādhanā 47, 152 (2022). https://doi.org/10.1007/s12046-022-01921-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12046-022-01921-3

Keywords

Navigation