Skip to main content
Log in

Graph isomorphism identification based on link-assortment adjacency matrix

  • Published:
Sādhanā Aims and scope Submit manuscript

Abstract

Exploring a general and effective method of isomorphism identification is an arduous task. For this aim, some new concepts such as binary link path and link-assortment adjacency matrix are introduced in this paper. On this basis, a new method is proposed to improve the operability of isomorphism identification and relieve the computational pressure. By generating new elements from structural features and connection relations among links or vertices in the graph, it transforms traditional high-ranking adjacency matrix into new low-ranking adjacency matrix. Some typical graphs including kinematic chains, topological graphs, and planetary gear trains are used to verify the effectiveness of the proposed method. As shown by a comparison with results in the cited references, the proposed method is available in isomorphism identification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Ding H F, Huang P, Liu J F and Kecskemethy A 2013 Automatic structural synthesis of the whole family of planar 3-degrees of freedom closed loop mechanisms. J. Mech. Robot. 5(4): 041006

    Article  Google Scholar 

  2. Kamesh V V, Rao K M and Rao A B S 2017 Detection of degenerate structure in single degree-of-freedom planetary gear trains. J. Mech. Des. 139(8): 083302

    Article  Google Scholar 

  3. Rao Y V D and Rao A C 2008 Generation of epicyclic gear trains of one degree of freedom. J. Mech. Des. 130(5): 052604

    Article  Google Scholar 

  4. Tanabe M and Takeda Y 2010 Kinematic design of a translational parallel manipulator with fine adjustment of platform orientation. Adv. Mech. Eng. 2010: 485358

    Article  Google Scholar 

  5. Uicker J J and Raicu A 1975 A method for the identification and recognition of equivalence of kinematic chains. Mech. Mach. Theory 10(5): 375–383

    Article  Google Scholar 

  6. Hwang W M and Hwang Y W 1992 Computer-aided structural synthesis of planar kinematic chains with simple joints. Mech. Mach. Theory 27(2): 189–199

    Article  Google Scholar 

  7. Yan H S and Hwang W M 1984 Linkage path code. Mech. Mach. Theory 19(4–5): 425–429

    Article  Google Scholar 

  8. Rao A C 1988 Kinematic chains isomorphism inversions and type of freedom using the concept of hamming distance. Indian J. Technol. 26: 105–109

    Google Scholar 

  9. Rao A C and Rao C N 1993 Loop based pseudo hamming values—I testing isomorphism and rating kinematic chains. Mech. Mach. Theory 28(1): 113–127

    Article  Google Scholar 

  10. Ding H F and Huang Z 2007 A new theory for the topological structure analysis of kinematic chains and its applications. Mech. Mach. Theory 42(10): 1264–1279

    Article  MathSciNet  Google Scholar 

  11. Ding H F and Huang Z 2007 The establishment of the canonical perimeter topological graph of kinematic chains and isomorphism identification. J. Mech. Design 129(9): 915–923

    Article  Google Scholar 

  12. Bedi G S and Sanyal S 2011 Modified joint connectivity approach for identification of topological characteristics of planar kinematic chains. P. I. Mech. Eng. C-J. Mech. 225(C11): 2700–2717

    Article  Google Scholar 

  13. Lohumi M K, Mohammad A and Khan I A 2012 Hierarchical clustering approach for determination of isomorphism among planar kinematic chains and their derived mechanisms. J. Mech. Sci. Technol. 26(12): 4041–4046

    Article  Google Scholar 

  14. Sun W, Kong J Y and Sun L B 2017 The improved hamming number method to detect isomorphism for kinematic chain with multiple joints. J. Adv. Mech. Des. Syst. 11(5): 17–00479

    Google Scholar 

  15. Sun W, Kong J Y and Sun L B 2018 A joint-joint matrix representation of planar kinematic chains with multiple joints and isomorphism identification. Adv. Mech. Eng. 10(6): 1–10

    Article  Google Scholar 

  16. Kamesh V V, Rao K M and Rao A B S 2017 An innovative approach to detect isomorphism in planar and geared kinematic chains using graph theory. J. Mech. Des. 139(12): 122301

    Article  Google Scholar 

  17. Rai R K and Punjabi S 2018 Kinematic chains isomorphism identification using link connectivity number and entropy neglecting tolerance and clearance. Mech. Mach. Theory 123: 40–65

    Article  Google Scholar 

  18. He L Y, Liu F X, Sun L and Wu C Y 2019 Isomorphic identification for kinematic chains using variable high-order adjacency link values. J. Mech. Sci. Technol. 33(10): 4899–4907

    Article  Google Scholar 

  19. Huang P, Liu T T, Ding H F and Zhao Y Q 2021 Isomorphism identification algorithm and database generation for planar 2–6 DOFs fractionated kinematic chains combined by two or three non-fractionated kinematic chains. Mech. Mach. Theory 166: 104520

    Article  Google Scholar 

  20. Zou Y H and He P 2016 An algorithm for identifying the isomorphism of planar multiple joint and gear train kinematic chains. Math. Probl. Eng. 2016: 5310582

    MathSciNet  MATH  Google Scholar 

  21. Deng T, Xu H, Tang P, Liu P and Yan L 2020 A novel algorithm for the isomorphism detection of various kinematic chains using topological index. Mech. Mach. Theory 146: 103740

    Article  Google Scholar 

  22. Sun L, Cui R J, Ye Z Z, Zhou Y Z and Xu Y D 2020 Similarity recognition and isomorphism identification of planar kinematic chains. Mech. Mach. Theory 145: 103678

    Article  Google Scholar 

  23. Cui R J, Ye Z Z, Sun L and Wu C Y 2021 Topological invariant and definition method for detecting isomorphism in planar kinematic chains. P. I. Mech. Eng. C-J. Mech. 235(15): 2715–2724

    Article  Google Scholar 

  24. Xiao R B, Tao Z W and Liu Y 2005 Isomorphism identification of kinematic chains using novel evolutionary approaches. J. Comput. Inf. Sci. Eng. 5(1): 18–24

    Article  Google Scholar 

  25. Gloria G M, Enrique M C and Domingo L R 2007 Improving neural networks for mechanism kinematic chain isomorphism identification. Neural Process. Lett. 26(2): 133–143

    Article  Google Scholar 

  26. Yang P, Zeng K H, Li C Q, Yang J M and Wang S T 2015 An improved hybrid immune algorithm for mechanism kinematic chain isomorphism identification in intelligent design. Soft Comput. 19(1): 217–223

    Article  Google Scholar 

  27. Liu H, Shi S Y, Yang P and Yang J M 2018 An improved genetic algorithm approach on mechanism kinematic structure enumeration with intelligent manufacturing. J. Intell. Robot. Syst. 88(3–4): 343–350

    Article  Google Scholar 

  28. Yi H J, Wang J P, Hu Y L and Yang P 2021 Mechanism isomorphism identification based on artificial fish swarm algorithm. P. I. Mech. Eng. C-J. Mech. 235(21): 5421–5433

    Article  Google Scholar 

  29. Ding H F, Huang P, Zi B and Kecskemethy A 2012 Automatic synthesis of kinematic structures of mechanisms and robots especially for those with complex structures. Appl. Math. Model 36(12): 6122–6131

    Article  MathSciNet  Google Scholar 

  30. Yang W J and Ding H F 2018 The perimeter loop-based method for the automatic isomorphism detection in planetary gear trains. J. Mech. Des. 140(12): 123302

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luchuan Yu.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest. All authors contributed to study conception and design. All authors read and approved the final manuscript.

Ethical approval

This article does not contain any studies with human participants performed by any of authors.

Appendices

Appendix A: Graphs and corresponding LAAMs for 9-link 2-DOF kinematic chains

Graphs and corresponding LAAMs for 9-link 2-DOF kinematic chains are listed in the Appendix A.

figure a

Chain1+5n

Chain2+5n

Chain3+5n

Chain4+5n

Chain5+5n

\(\left[ {\begin{array}{*{20}c} 3 & {} \\ {220} & {5\left( 3 \right)} \\ \end{array} } \right]\)

\(\left[ {\begin{array}{*{20}c} 3 & {} & {} \\ 0 & 3 & {} \\ {30} & {21} & 4 \\ \end{array} } \right]\)

\(\left[ {\begin{array}{*{20}c} 4 & {} \\ {3211} & 4 \\ \end{array} } \right]\)

\(\left[ {\begin{array}{*{20}c} 3 & {} & {} \\ 1 & 3 & {} \\ {11} & {30} & 4 \\ \end{array} } \right]\)

\(\left[ {\begin{array}{*{20}c} 3 & {} & {} \\ 0 & 3 & {} \\ {11} & {31} & 4 \\ \end{array} } \right]\)

\(\left[ {\begin{array}{*{20}c} 3 & {} & {} \\ {21} & 3 & {} \\ 0 & 0 & {4\left( 3 \right)} \\ \end{array} } \right]\)

\(\left[ {\begin{array}{*{20}c} 3 & {} & {} & {} \\ 0 & 3 & {} & {} \\ 3 & 0 & 3 & {} \\ 0 & 2 & 0 & 3 \\ \end{array} } \right]\)

\(\left[ {\begin{array}{*{20}c} 3 & {} & {} & {} \\ 0 & 3 & {} & {} \\ 1 & 0 & 3 & {} \\ 0 & 3 & 1 & 3 \\ \end{array} } \right]\)

\(\left[ {\begin{array}{*{20}c} 3 & {} & {} \\ {11} & 3 & {} \\ 0 & 1 & {4\left( 3 \right)} \\ \end{array} } \right]\)

\(\left[ {\begin{array}{*{20}c} 3 & {} & {} & {} \\ 0 & 3 & {} & {} \\ { - 1} & {30} & 3 & {} \\ {11} & { - 1} & 0 & 3 \\ \end{array} } \right]\)

\(\left[ {\begin{array}{*{20}c} 3 & {} & {} \\ 2 & 3 & {} \\ {20} & {20} & 4 \\ \end{array} } \right]\)

\(\left[ {\begin{array}{*{20}c} 4 & {} \\ {3220} & 4 \\ \end{array} } \right]\)

\(\left[ {\begin{array}{*{20}c} 3 & {} & {} \\ 2 & 3 & {} \\ {11} & {20} & 4 \\ \end{array} } \right]\)

\(\left[ {\begin{array}{*{20}c} 3 & {} & {} \\ 2 & 3 & {} \\ {11} & {11} & 4 \\ \end{array} } \right]\)

\(\left[ {\begin{array}{*{20}c} 3 & {} & {} \\ 1 & 3 & {} \\ {20} & {21} & 4 \\ \end{array} } \right]\)

\(\left[ {\begin{array}{*{20}c} 3 & {} & {} \\ 0 & 3 & {} \\ {20} & {22} & 4 \\ \end{array} } \right]\)

\(\left[ {\begin{array}{*{20}c} 3 & {} & {} & {} \\ 0 & 3 & {} & {} \\ 2 & 0 & 3 & {} \\ 2 & 1 & 0 & 3 \\ \end{array} } \right]\)

\(\left[ {\begin{array}{*{20}c} 3 & {} & {} & {} \\ 1 & 3 & {} & {} \\ 1 & 0 & 3 & {} \\ 2 & 1 & 0 & 3 \\ \end{array} } \right]\)

\(\left[ {\begin{array}{*{20}c} 3 & {} & {} & {} \\ 0 & 3 & {} & {} \\ 2 & 0 & 3 & {} \\ 2 & 0 & 1 & 3 \\ \end{array} } \right]\)

\(\left[ {\begin{array}{*{20}c} 3 & {} & {} & {} \\ 1 & 3 & {} & {} \\ { - 1} & {20} & 3 & {} \\ {20} & { - 1} & 0 & 3 \\ \end{array} } \right]\)

\(\left[ {\begin{array}{*{20}c} 3 & {} & {} & {} \\ 0 & 3 & {} & {} \\ { - 1} & {21} & 3 & {} \\ {20} & { - 1} & 0 & 3 \\ \end{array} } \right]\)

\(\left[ {\begin{array}{*{20}c} 3 & {} & {} \\ 1 & 3 & {} \\ {21} & {11} & 4 \\ \end{array} } \right]\)

\(\left[ {\begin{array}{*{20}c} 3 & {} & {} \\ 0 & 3 & {} \\ {20} & {31} & 4 \\ \end{array} } \right]\)

\(\left[ {\begin{array}{*{20}c} 3 & {} & {} \\ 0 & 3 & {} \\ {11} & {22} & 4 \\ \end{array} } \right]\)

\(\left[ {\begin{array}{*{20}c} 3 & {} & {} & {} \\ 1 & 3 & {} & {} \\ 2 & 0 & 3 & {} \\ 1 & 1 & 0 & 3 \\ \end{array} } \right]\)

\(\left[ {\begin{array}{*{20}c} 3 & {} & {} & {} \\ 1 & 3 & {} & {} \\ { - 1} & {20} & 3 & {} \\ {11} & { - 1} & 0 & 3 \\ \end{array} } \right]\)

\(\left[ {\begin{array}{*{20}c} 3 & {} & {} & {} \\ 0 & 3 & {} & {} \\ { - 1} & {21} & 3 & {} \\ {11} & { - 1} & 0 & 3 \\ \end{array} } \right]\)

\(\left[ {\begin{array}{*{20}c} 3 & {} & {} & {} \\ 1 & 3 & {} & {} \\ {11} & { - 1} & 3 & {} \\ { - 1} & {11} & 0 & 3 \\ \end{array} } \right]\)

\(\left[ {\begin{array}{*{20}c} 4 & {} \\ {2221} & 4 \\ \end{array} } \right]\)

\(\left[ {\begin{array}{*{20}c} 3 & {} & {} \\ 0 & 3 & {} \\ {21} & {21} & 4 \\ \end{array} } \right]\)

\(\left[ {\begin{array}{*{20}c} 3 & {} & {} & {} \\ 0 & 3 & {} & {} \\ 1 & 2 & 3 & {} \\ 2 & 0 & 0 & 3 \\ \end{array} } \right]\)

\(\left[ {\begin{array}{*{20}c} 3 & {} & {} & {} \\ 0 & 3 & {} & {} \\ 1 & 2 & 3 & {} \\ 1 & 1 & 0 & 3 \\ \end{array} } \right]\)

\(\left[ {\begin{array}{*{20}c} 3 & {} & {} & {} \\ 2 & 3 & {} & {} \\ 1 & 1 & 3 & {} \\ 0 & 0 & 1 & 3 \\ \end{array} } \right]\)

\(\left[ {\begin{array}{*{20}c} 3 & {} & {} \\ 1 & 3 & {} \\ {30} & {20} & 4 \\ \end{array} } \right]\)

\(\left[ {\begin{array}{*{20}c} 3 & {} & {} & {} \\ 1 & 3 & {} & {} \\ 1 & 1 & 3 & {} \\ 1 & 0 & 1 & 3 \\ \end{array} } \right]\)

\(\left[ {\begin{array}{*{20}c} 3 & {} & {} \\ {20} & 3 & {} \\ 0 & 1 & {4\left( 3 \right)} \\ \end{array} } \right]\)

\(\left[ {\begin{array}{*{20}c} 3 & {} & {} & {} \\ {30} & 3 & {} & {} \\ { - 1} & 0 & 3 & {} \\ 0 & { - 1} & {20} & 3 \\ \end{array} } \right]\)

\(\left[ {\begin{array}{*{20}c} 3 & {} & {} & {} \\ 0 & 3 & {} & {} \\ 1 & 3 & 3 & {} \\ 0 & 1 & 0 & 3 \\ \end{array} } \right]\)

\(\left[ {\begin{array}{*{20}c} 3 & {} & {} & {} \\ 0 & 3 & {} & {} \\ 3 & 0 & 3 & {} \\ 1 & 0 & 1 & 3 \\ \end{array} } \right]\)

\(\left[ {\begin{array}{*{20}c} 3 & {} \\ {211} & {5\left( 3 \right)} \\ \end{array} } \right]\)

  1. Note: n is an integer ranging from 0 to 7.

Appendix B: Graphs and corresponding LAAMs for 6-link 1-DOF planetary gear trains

Graphs and corresponding LAAMs for 6-link 1-DOF planetary gear trains are listed in the Appendix B.

figure b
figure c

G1+3n

G2+3n

G3+3n

\(L_{l} = \left[ {\begin{array}{*{20}c} 3 & {} & {} & {} & {} \\ {2^{2} } & 3 & {} & {} & {} \\ { - 1} & {2^{2} } & 3 & {} & {} \\ {1_{2} } & { - 1} & {1_{2} } & {3^{2} } & {} \\ {2_{2}^{21} } & {1_{2} } & {2_{2}^{21} } & {2_{212} } & {4^{2} } \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} 3 & {} & {} & {} & {} & {} \\ {2^{2} } & 3 & {} & {} & {} & {} \\ { - 1} & {2^{21} } & 3 & {} & {} & {} \\ {2^{2} } & { - 1} & { - 1} & 3 & {} & {} \\ { - 1} & {1_{2} } & {1_{2} } & {1_{2} } & {3^{2} } & {} \\ {1_{2} } & { - 1} & {1_{2} } & {2_{2}^{21} } & { - 1} & {3^{2} } \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} 3 & {} & {} & {} & {} \\ {2^{2} } & 3 & {} & {} & {} \\ { - 1} & 1 & 3 & {} & {} \\ {2^{2} } & { - 1} & 1 & 3 & {} \\ {1_{2} } & {2_{2}^{21} } & {1_{2} } & {2_{2}^{21} } & {4^{2} } \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} 3 & {} & {} & {} & {} & {} \\ { - 1} & 3 & {} & {} & {} & {} \\ { - 1} & {2^{2} } & 3 & {} & {} & {} \\ 1 & { - 1} & {2^{2} } & 3 & {} & {} \\ {1_{2} } & {2_{2}^{21} } & {1_{2} } & { - 1} & {3^{2} } & {} \\ {1_{2} } & {1_{2} } & { - 1} & {2_{2}^{21} } & { - 1} & {3^{2} } \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} 3 & {} & {} & {} & {} \\ {2^{2} } & 3 & {} & {} & {} \\ { - 1} & {2_{2}^{2} } & {3^{2} } & {} & {} \\ { - 1} & {1_{2} } & {2_{212}^{12} } & {3^{2} } & {} \\ {2^{21} 1} & { - 1} & {1_{2} } & {1_{2} } & 4 \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} 3 & {} & {} & {} & {} & {} \\ 1 & 3 & {} & {} & {} & {} \\ { - 1} & {2^{2} } & 3 & {} & {} & {} \\ { - 1} & {2^{2} } & { - 1} & 3 & {} & {} \\ {1_{2} } & { - 1} & {2_{2}^{21} } & {1_{2} } & {3^{2} } & {} \\ {1_{2} } & { - 1} & {1_{2} } & {2_{2}^{21} } & { - 1} & {3^{2} } \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} 3 & {} & {} & {} & {} \\ {2^{2} } & 3 & {} & {} & {} \\ { - 1} & {2^{2} } & 3 & {} & {} \\ {1_{2} } & { - 1} & {2_{2}^{21} } & {3^{2} } & {} \\ {2^{21} } & 1 & 1 & {1_{2} } & 4 \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} 3 & {} & {} & {} & {} & {} \\ 1 & 3 & {} & {} & {} & {} \\ { - 1} & {2^{2} } & 3 & {} & {} & {} \\ { - 1} & {2^{2} } & { - 1} & 3 & {} & {} \\ {1_{2} } & { - 1} & {2_{2}^{21} } & {2_{2}^{21} } & {3^{2} } & {} \\ {1_{2} } & { - 1} & {1_{2} } & {1_{2} } & { - 1} & {3^{2} } \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} 3 & {} & {} & {} & {} \\ {2^{2} } & 3 & {} & {} & {} \\ { - 1} & {2^{2} } & 3 & {} & {} \\ {1_{2} } & { - 1} & {1_{2} } & {3^{2} } & {} \\ {2^{21} } & 1 & {2^{21} } & {1_{2} } & 4 \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} 3 & {} & {} & {} & {} \\ {2^{2} } & 3 & {} & {} & {} \\ { - 1} & {2^{2} } & 3 & {} & {} \\ {2_{2}^{21} } & { - 1} & {2_{2}^{21} } & {3^{2} } & {} \\ 1 & 1 & 1 & {1_{2} } & 4 \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} 3 & {} & {} & {} \\ {2^{2} } & 3 & {} & {} \\ { - 1} & {2^{2} } & 3 & {} \\ {2^{21} 1} & 1 & {2^{21} 1} & 5 \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} 3 & {} & {} & {} & {} \\ {2^{2} } & 3 & {} & {} & {} \\ { - 1} & {2^{2} } & 3 & {} & {} \\ 1 & { - 1} & {2^{2} } & 3 & {} \\ {1_{2} } & {2_{2} } & {1_{2} } & {2_{2}^{21} } & {4^{2} } \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} 3 & {} & {} & {} & {} \\ { - 1} & 3 & {} & {} & {} \\ {2^{2} } & {2^{2} } & 3 & {} & {} \\ { - 1} & {2_{2} } & {1_{2} } & {3^{2} } & {} \\ {2^{21} 1} & {2^{2} } & { - 1} & {1_{2} } & 4 \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} 3 & {} & {} & {} & {} \\ {2^{2} } & 3 & {} & {} & {} \\ { - 1} & 1 & 3 & {} & {} \\ 1 & { - 1} & {2^{2} } & 3 & {} \\ {1_{2} } & {2_{2}^{21} } & {1_{2} } & {2_{2}^{21} } & {4^{2} } \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} 3 & {} & {} & {} & {} \\ {2^{2} } & 3 & {} & {} & {} \\ { - 1} & 1 & 3 & {} & {} \\ { - 1} & {1_{2} } & {2_{2}^{21} } & {3^{2} } & {} \\ {2^{21} 1} & { - 1} & {2^{2} } & {1_{2} } & 4 \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} 3 & {} & {} & {} \\ { - 1} & 3 & {} & {} \\ {2^{2} } & {2^{21} 1} & 4 & {} \\ {2^{21} 1} & {2^{2} } & 1 & 4 \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} 3 & {} & {} & {} & {} \\ {2^{2} } & 3 & {} & {} & {} \\ { - 1} & {2^{2} } & 3 & {} & {} \\ {2^{2} } & { - 1} & {2^{2} } & 3 & {} \\ {1_{2} } & {2_{2} } & {1_{2} } & {2_{2} } & {4^{2} } \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} 3 & {} & {} & {} \\ {2_{2}^{21} } & {3^{2} } & {} & {} \\ 1 & {2_{2} } & 4 & {} \\ {2^{2} } & {1_{2} } & {2^{21} 2^{21} } & 4 \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} 3 & {} & {} & {} \\ {2^{12} } & 3 & {} & {} \\ {2^{2} } & 1 & 4 & {} \\ {1_{2} } & {1_{2} } & {2_{2}^{21} 2_{2}^{21} } & {4^{2} } \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} 3 & {} & {} & {} & {} \\ { - 1} & 3 & {} & {} & {} \\ {1_{2} } & {2_{2}^{21} } & {3^{2} } & {} & {} \\ {1_{2} } & {1_{2} } & { - 1} & {3^{2} } & {} \\ {2^{12} } & {2^{2} } & {1_{2} } & {2_{2}^{12} } & 4 \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} 3 & {} & {} & {} & {} \\ { - 1} & 3 & {} & {} & {} \\ {1_{2} } & {2_{2}^{21} } & {3^{2} } & {} & {} \\ {1_{2} } & {1_{2} } & { - 1} & {3^{2} } & {} \\ 1 & {2^{2} } & {2_{2}^{12} } & {2_{2}^{12} } & 4 \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} 3 & {} & {} & {} \\ {1_{2} } & {3^{2} } & {} & {} \\ {2^{2} } & {2_{2}^{21} } & 4 & {} \\ {2^{21} } & {1_{2} } & {2^{21} 1} & 4 \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} 3 & {} & {} & {} \\ 1 & 3 & {} & {} \\ 1 & {2^{2} } & 4 & {} \\ {1_{2} } & {2_{2}^{21} } & {2_{2}^{21} 2_{2}^{21} } & {4^{2} } \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} 3 & {} & {} & {} & {} \\ 1 & 3 & {} & {} & {} \\ { - 1} & {1_{2} } & {3^{2} } & {} & {} \\ {2_{2}^{21} } & {1_{2} } & { - 1} & {3^{2} } & {} \\ {2^{2} } & { - 1} & {2_{2}^{12} 2_{2}^{12} } & {1_{2} } & 4 \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} 3 & {} & {} & {} \\ { - 1} & {3^{2} } & {} & {} \\ {2^{21} 1} & {1_{2} } & 4 & {} \\ {2^{2} } & {2_{2}^{12} 2_{2}^{12} } & 1 & 4 \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} 3 & {} & {} & {} \\ {2_{2}^{21} } & {3^{2} } & {} & {} \\ 1 & {1_{2} } & 4 & {} \\ {2^{2} } & {2_{2}^{12} } & {2^{21} 1} & 4 \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} 3 & {} & {} & {} \\ {2_{2}^{21} } & {3^{2} } & {} & {} \\ 1 & {1_{2} } & 4 & {} \\ {2^{2} } & {1_{2} } & {2^{12} 2^{12} } & 4 \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} 3 & {} & {} \\ {2^{2} } & 4 & {} \\ {2^{21} 1} & {2^{21} 2^{21} 1} & 5 \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} 3 & {} & {} & {} \\ {2^{21} } & 3 & {} & {} \\ 1 & {2^{2} } & 4 & {} \\ {1_{2} } & {1_{2} } & {2_{2}^{21} 2_{2}^{21} } & {4^{2} } \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} 3 & {} & {} & {} \\ {1_{2} } & {3^{2} } & {} & {} \\ {2^{2} } & {2_{2}^{12} } & 4 & {} \\ {2^{12} } & {1_{2} } & {2^{21} 1} & 4 \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} 3 & {} & {} & {} \\ { - 1} & {3^{2} } & {} & {} \\ {2^{2} } & {2_{2}^{12} 2_{2}^{12} } & 4 & {} \\ {2^{12} 1} & {1_{2} } & 1 & 4 \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} 3 & {} & {} \\ {2^{2} } & 4 & {} \\ {2^{12} 1} & {2^{21} 2^{21} 1} & 5 \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} 3 & {} & {} & {} & {} & {} \\ {2^{2} } & 3 & {} & {} & {} & {} \\ { - 1} & {2^{21} } & 3 & {} & {} & {} \\ {2^{2} } & { - 1} & { - 1} & 3 & {} & {} \\ { - 1} & {1_{2} } & {1_{2} } & {1_{2} } & {3^{2} } & {} \\ {1_{2} } & { - 1} & {1_{2} } & {2_{2}^{21} } & { - 1} & {3^{2} } \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} 3 & {} & {} & {} & {} \\ {2^{2} } & 3 & {} & {} & {} \\ { - 1} & {2^{2} } & 3 & {} & {} \\ {1_{2} } & { - 1} & {1_{2} } & {3^{2} } & {} \\ {2^{12} } & 1 & {2^{21} } & {1_{2} } & 4 \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} 3 & {} & {} & {} & {} \\ { - 1} & 3 & {} & {} & {} \\ {2^{2} } & {2^{2} } & 3 & {} & {} \\ {1_{2} } & {2_{2}^{21} } & { - 1} & {3^{2} } & {} \\ {2^{12} } & 1 & 1 & {1_{2} } & 4 \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} 3 & {} & {} & {} & {} \\ { - 1} & 3 & {} & {} & {} \\ {2^{2} } & {2^{2} } & 3 & {} & {} \\ { - 1} & {2_{2}^{21} } & {1_{2} } & {3^{2} } & {} \\ {2^{12} 1} & 1 & { - 1} & {1_{2} } & 4 \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} 3 & {} & {} & {} \\ {2^{2} } & 3 & {} & {} \\ { - 1} & {2^{2} } & 3 & {} \\ {2^{12} 1} & 1 & {2^{21} 1} & 5 \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} 3 & {} & {} & {} \\ {2^{12} } & 3 & {} & {} \\ {2^{2} } & {2^{2} } & 4 & {} \\ {1_{2} } & {1_{2} } & {2_{2}^{21} 2_{2} } & {4^{2} } \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} 3 & {} & {} & {} & {} \\ { - 1} & 3 & {} & {} & {} \\ { - 1} & {2^{12} } & 3 & {} & {} \\ {1_{2} } & {1_{2} } & {1_{2} } & {3^{2} } & {} \\ {2^{12} 1} & {2^{2} } & {2^{2} } & { - 1} & 4 \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} 3 & {} & {} & {} & {} & {} \\ {2^{2} } & 3 & {} & {} & {} & {} \\ { - 1} & {2^{2} } & 3 & {} & {} & {} \\ { - 1} & 1 & { - 1} & 3 & {} & {} \\ {1_{2} } & { - 1} & {2_{2}^{21} } & {2_{2}^{21} } & {3^{2} } & {} \\ {1_{2} } & { - 1} & {1_{2} } & {1_{2} } & { - 1} & {3^{2} } \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} 3 & {} & {} & {} & {} \\ {2^{2} } & 3 & {} & {} & {} \\ { - 1} & 1 & 3 & {} & {} \\ {1_{2} } & { - 1} & {1_{2} } & {3^{2} } & {} \\ {2^{21} } & {2^{2} } & {2^{21} } & {1_{2} } & 4 \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} 3 & {} & {} & {} & {} & {} \\ {2^{2} } & 3 & {} & {} & {} & {} \\ { - 1} & {2^{2} } & 3 & {} & {} & {} \\ {2^{2} } & { - 1} & {2^{12} } & 3 & {} & {} \\ 1 & 1 & { - 1} & { - 1} & 3 & {} \\ { - 1} & { - 1} & {1_{2} } & {1_{2} } & {1_{2} } & {3^{2} } \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} 3 & {} & {} & {} & {} & {} \\ 1 & 3 & {} & {} & {} & {} \\ { - 1} & {2^{2} } & 3 & {} & {} & {} \\ { - 1} & {1_{2} } & { - 1} & {3^{2} } & {} & {} \\ {2^{2} } & { - 1} & {2^{2} } & {1_{2} } & 4 & {} \\ {1_{2} } & { - 1} & {1_{2} } & {2_{2} } & {2_{2}^{21} } & {4^{2} } \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} 3 & {} & {} & {} & {} \\ { - 1} & 3 & {} & {} & {} \\ {2^{2} } & 1 & 3 & {} & {} \\ {1_{2} } & {1_{2} } & { - 1} & {3^{2} } & {} \\ {2^{12} } & {2^{12} } & {2^{2} } & {1_{2} } & 4 \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} 3 & {} & {} & {} & {} \\ {2^{2} } & 3 & {} & {} & {} \\ { - 1} & {1_{2} } & {3^{2} } & {} & {} \\ {1_{2} } & { - 1} & {2_{212} } & {3^{2} } & {} \\ {2^{21} } & {2^{2} } & {2_{2}^{12} } & {1_{2} } & 4 \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} 3 & {} & {} & {} & {} \\ { - 1} & 3 & {} & {} & {} \\ 1 & {2^{2} } & 3 & {} & {} \\ {1_{2} } & {1_{2} } & { - 1} & {3^{2} } & {} \\ {2^{12} } & {2^{21} } & {2^{2} } & {1_{2} } & 4 \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} 3 & {} & {} & {} & {} \\ { - 1} & 3 & {} & {} & {} \\ {1_{2} } & {2_{2}^{21} } & {3^{2} } & {} & {} \\ {1_{2} } & {1_{2} } & { - 1} & {3^{2} } & {} \\ {2^{21} } & {2^{2} } & {1_{2} } & {2_{2}^{12} } & 4 \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} 3 & {} & {} & {} \\ {1_{2} } & {3^{2} } & {} & {} \\ {2^{2} } & {2_{2}^{21} } & 4 & {} \\ {2^{21} } & {1_{2} } & {2^{12} 1} & 4 \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} 3 & {} & {} & {} \\ {2_{2}^{21} } & {3^{2} } & {} & {} \\ {2^{2} } & {1_{2} } & 4 & {} \\ 1 & {1_{2} } & {2^{21} 2^{12} } & 4 \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} 3 & {} & {} & {} & {} \\ {2^{2} } & 3 & {} & {} & {} \\ { - 1} & {2^{2} } & 3 & {} & {} \\ {2_{2}^{21} } & { - 1} & {1_{2} } & {3^{2} } & {} \\ 1 & {2^{12} } & 1 & {1_{2} } & 4 \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} 3 & {} & {} \\ {2^{2} } & 4 & {} \\ {2^{12} 1} & {2^{21} 2^{12} 1} & 5 \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} 3 & {} & {} & {} & {} \\ 1 & 3 & {} & {} & {} \\ { - 1} & {2^{2} } & 3 & {} & {} \\ { - 1} & {1_{2} } & {2_{2} } & {3^{2} } & {} \\ {2^{12} 2^{12} } & { - 1} & {2^{2} } & {1_{2} } & 4 \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} 3 & {} & {} & {} \\ {2_{2} } & {3^{2} } & {} & {} \\ {2^{2} } & {1_{2} } & 4 & {} \\ {2^{2} } & {1_{2} } & {2^{12} 2^{12} } & 4 \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} 3 & {} & {} & {} & {} \\ {2^{2} } & 3 & {} & {} & {} \\ { - 1} & 1 & 3 & {} & {} \\ { - 1} & {1_{2} } & {2_{2}^{21} } & {3^{2} } & {} \\ {2^{12} 1} & { - 1} & {2^{2} } & {1_{2} } & 4 \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} 3 & {} & {} & {} \\ { - 1} & 3 & {} & {} \\ {2^{21} 1} & {2^{2} } & 4 & {} \\ {2^{2} } & {2^{12} 1} & 1 & 4 \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} 3 & {} & {} & {} & {} \\ {2^{2} } & 3 & {} & {} & {} \\ { - 1} & {2^{2} } & 3 & {} & {} \\ { - 1} & {1_{2} } & {2_{2} } & {3^{2} } & {} \\ {2^{12} 1} & { - 1} & {2^{2} } & {1_{2} } & 4 \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} 3 & {} & {} & {} & {} \\ {2^{2} } & 3 & {} & {} & {} \\ {1_{2} } & {2_{2}^{21} } & {3^{2} } & {} & {} \\ {1_{2} } & { - 1} & { - 1} & {3^{2} } & {} \\ { - 1} & 1 & {1_{2} } & {2_{2}^{12} 2_{2}^{12} } & 4 \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} 3 & {} & {} & {} & {} \\ {2^{2} } & 3 & {} & {} & {} \\ { - 1} & {2^{2} } & 3 & {} & {} \\ {1_{2} } & { - 1} & {1_{2} } & {4^{2} } & {} \\ 1 & 1 & 1 & {2_{2}^{12} 2_{2}^{12} } & 5 \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} 3 & {} & {} & {} \\ {2_{2}^{21} } & {3^{2} } & {} & {} \\ 1 & {1_{2} } & 4 & {} \\ {2^{2} } & {1_{2} } & {2^{21} 2^{21} } & 4 \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} 3 & {} & {} \\ {2^{2} } & 4 & {} \\ {2^{21} 1} & {2^{12} 2^{12} 1} & 5 \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} 3 & {} & {} & {} & {} \\ { - 1} & 3 & {} & {} & {} \\ { - 1} & {2^{12} } & 3 & {} & {} \\ {1_{2} } & {1_{2} } & {1_{2} } & {3^{2} } & {} \\ {2^{21} 1} & {2^{2} } & {2^{2} } & { - 1} & 4 \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} 3 & {} & {} & {} \\ { - 1} & 3 & {} & {} \\ {2^{12} 1} & {2^{2} } & 4 & {} \\ {2^{2} } & {2^{12} 1} & 1 & 4 \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} {3^{2} } & {} & {} & {} \\ { - 1} & {3^{2} } & {} & {} \\ {1_{2} } & {2_{2}^{12} 2_{2}^{12} } & 4 & {} \\ {2_{2}^{12} 2_{2}^{2} } & {1_{2} } & 1 & 4 \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} 3 & {} & {} \\ 1 & 4 & {} \\ {2^{12} 2^{12} } & {2^{21} 2^{21} 1} & 5 \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} 5 & {} \\ {2^{21} 2^{21} 2^{12} 2^{12} 1} & 5 \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} 3 & {} & {} & {} \\ {1_{2} } & {3^{2} } & {} & {} \\ {2^{12} } & {1_{2} } & 4 & {} \\ {2^{2} } & {2_{2}^{12} } & {2^{12} 1} & 4 \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} 3 & {} & {} \\ {2^{2} } & 4 & {} \\ {2^{12} 1} & {2^{21} 2^{12} 1} & 5 \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} 3 & {} & {} & {} & {} \\ {2^{2} } & 3 & {} & {} & {} \\ { - 1} & {2^{2} } & 3 & {} & {} \\ {1_{2} } & { - 1} & {1_{2} } & {3^{2} } & {} \\ {2^{12} } & 1 & {2^{12} } & {1_{2} } & 4 \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} 3 & {} & {} & {} \\ {2^{2} } & 3 & {} & {} \\ { - 1} & {2^{2} } & 4 & {} \\ {2^{12} 1} & 1 & {2^{12} 1} & 5 \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} 3 & {} & {} & {} & {} \\ {2^{2} } & 3 & {} & {} & {} \\ { - 1} & 1 & 3 & {} & {} \\ {1_{2} } & { - 1} & {1_{2} } & {3^{2} } & {} \\ {2^{12} } & {2^{2} } & {2^{21} } & {1_{2} } & 4 \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} 3 & {} & {} & {} \\ {2_{2} } & {3^{2} } & {} & {} \\ {2^{2} } & {1_{2} } & 4 & {} \\ {2^{2} } & {1_{2} } & {2^{21} 2^{12} } & 4 \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} 5 & {} \\ {2_{2}^{21} 2_{2}^{21} 2_{2}^{21} 2_{2}^{21} 2_{2} } & {5^{2} } \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} 3 & {} & {} \\ {1_{2} } & {4^{2} } & {} \\ {2^{12} 1} & {2_{2}^{12} 2_{2}^{12} 2_{2}^{12} } & 5 \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} {3^{2} } & {} & {} \\ {2_{2} } & 4 & {} \\ {2_{2}^{12} 2_{2}^{12} } & {2^{12} 2^{12} } & 5 \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} {3^{2} } & {} & {} \\ {1_{2} } & 4 & {} \\ {2_{2}^{12} 2_{2}^{12} } & {2^{12} 2^{12} 1} & 5 \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} 5 & {} \\ {2^{12} 2^{12} 2^{12} 2^{12} 1} & 5 \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} 3 & {} & {} \\ {1_{2} } & {4^{2} } & {} \\ {2^{21} 1} & {2_{2}^{12} 2_{2}^{12} 2_{2}^{12} } & 5 \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} {3^{2} } & {} & {} \\ {1_{2} } & 4 & {} \\ {2_{2}^{12} 2_{2}^{12} } & {2^{21} 2^{12} 1} & 5 \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} 5 & {} \\ {2^{21} 2^{12} 2^{12} 2^{12} 1} & 5 \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} 3 & {} & {} & {} \\ {2^{2} } & 3 & {} & {} \\ { - 1} & {1_{2} } & {3^{2} } & {} \\ {2^{12} 1} & 1 & {2_{2}^{12} 2_{2}^{12} } & 5 \\ \end{array} } \right]\)

\(L_{l} = \left[ {\begin{array}{*{20}c} 3 & {} & {} & {} \\ {2^{2} } & 3 & {} & {} \\ { - 1} & {1_{2} } & {3^{2} } & {} \\ {2^{12} 1} & 1 & {2_{2}^{12} 2_{2}^{12} } & 5 \\ \end{array} } \right]\)

  1. Note: n is an integer ranging from 0 to 26.

Appendix C: Graphs and corresponding LAAMs for 10-link co-spectral chains

Graphs and corresponding LAAMs for 10-link co-spectral chains are listed in the Appendix C.

figure d
$$ {\text{LAAM}}_{1} = \left[ {\begin{array}{*{20}l} {3^{2} } \hfill & {} \hfill & {} \hfill & {} \hfill \\ {1_{2} } \hfill & 3 \hfill & {} \hfill & {} \hfill \\ {20} \hfill & 0 \hfill & 4 \hfill & {} \hfill \\ {1_{22} } \hfill & {2_{2} } \hfill & {1_{2} } \hfill & { - 3^{2} } \hfill \\ \end{array} } \right]\;\;{\text{LAAM}}_{2} = \left[ {\begin{array}{*{20}l} 3 \hfill & {} \hfill & {} \hfill & {} \hfill \\ {1_{2} } \hfill & {3^{2} } \hfill & {} \hfill & {} \hfill \\ 0 \hfill & {20} \hfill & 4 \hfill & {} \hfill \\ {2_{2} } \hfill & {1_{22} } \hfill & {1_{2} } \hfill & { - 3^{2} } \hfill \\ \end{array} } \right]\;\;{\text{LAAM}}_{3} = \left[ {\begin{array}{*{20}l} 3 \hfill & {} \hfill & {} \hfill & {} \hfill \\ {1_{2} } \hfill & 3 \hfill & {} \hfill & {} \hfill \\ {20} \hfill & 0 \hfill & 4 \hfill & {} \hfill \\ {1_{22} } \hfill & {2_{2} } \hfill & {2_{2} } \hfill & { - 3^{2} } \hfill \\ \end{array} } \right] $$

Appendix D: Graphs and corresponding LAAMs for crossed 10-link kinematic chains

Graphs and corresponding LAAMs for crossed 10-link are listed in the Appendix D.

figure e
$$ {\text{LAAM}}_{1} = \left[ {\begin{array}{*{20}l} 3 \hfill & {} \hfill & {} \hfill & {} \hfill \\ {21} \hfill & 3 \hfill & {} \hfill & {} \hfill \\ { - 1} \hfill & 0 \hfill & 3 \hfill & {} \hfill \\ 0 \hfill & { - 1} \hfill & {21} \hfill & 3 \hfill \\ \end{array} } \right]\quad {\text{LAAM}}_{2} = \left[ {\begin{array}{*{20}l} 3 \hfill & {} \hfill & {} \hfill & {} \hfill \\ 2 \hfill & 3 \hfill & {} \hfill & {} \hfill \\ 1 \hfill & 0 \hfill & 3 \hfill & {} \hfill \\ 0 \hfill & 1 \hfill & 2 \hfill & 3 \hfill \\ \end{array} } \right] $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, L., Wang, H. & Zhou, S. Graph isomorphism identification based on link-assortment adjacency matrix. Sādhanā 47, 151 (2022). https://doi.org/10.1007/s12046-022-01918-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12046-022-01918-y

Keywords

Navigation