Skip to main content
Log in

Development and characterization of copper doped perovskite-polymer composite through high-temperature technique

  • Published:
Sādhanā Aims and scope Submit manuscript

Abstract

Ceramic powders of Cu doped lead Titanate (Pb0.5Cu0.5TiO3) are synthesized through a solid-state reaction method at high-temperature. Different percentage of ceramic filler into the polymer matrix was prepared by solution casting techniques. The structural studies of this polymeric composite were characterized by the X-ray diffraction technique and a tetragonal phase was found. Moreover, the surface morphology of this material was done by scanning electron microscopy. The impedance studies of this polymeric composite were characterized by an LCR meter between the frequencies range 102 and106 Hz. The modulus study of the material was done between the frequency ranges 102 and106 Hz. The variation of ac conductivity with frequency at different temperatures satisfied Jonscher’s universal power law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Abbreviations

K:

Kelvin

k:

Kilo (103)

ε* :

Complex permitivity

Z* :

Complex impedance

°C:

Degree celcius

\(D\) :

Crystallite size

K:

Shape factor (constant) = 0.89

\(\theta\) :

Diffraction angle

\(\lambda\) :

Wavelength = 1.5406 Å

\(\beta_{1/2}\) :

Full width of the reflection at half of the maximum intensity

Å:

Angstrom

\(\varepsilon\) :

Microstrain

\(\delta \) :

Dislocation density

ε r :

Dielectric constant

tanδ:

Dielectric loss

Z′:

Real part of the impedance

Z″:

Imaginary part of the impedance

M′:

Real part of the impedance

M″:

Imaginary part of the impedance

\({\sigma }_{ac}\) :

AC conductivity

\({\varepsilon }_{0}\) :

Absolute permitivity

\({\varepsilon }_{r}\) :

Relative permitivity

\(\omega \) :

Frequency

\({\sigma }_{dc}\) :

DC conductivity

\(A\) :

The temperature pre-exponential factor

n:

The dimensionless exponent

References

  1. Wang J, Pang X, Akinc M and Lin Z 2010 Synthesis and characterization of perovskite PbTiO3 nanoparticles with solution processability. J. Mater. Chem. 20: 5945–5949

    Article  Google Scholar 

  2. Zare K, Sadjadi M S, Enhessari M and Khanahmadzadeh S 2009 Synthesis and characterization of PbTiO3 nanopowders by citric acid gel method. Phys. Theor. Chem. 6: 9–12

    Google Scholar 

  3. Qiang L, Ma J, Zhang X and Chu J 2008 Preparation and microstructure analysis of Fe-doped PbTiO 3 ceramic. Front. Chem. Eng. 2: 140–144

    Article  Google Scholar 

  4. Chaudhari V and Bichile G K 2013 Synthesis, structural, and electrical properties of pure PbTiO 3 ferroelectric ceramics. Smart Mater. Struct. 2013: 9

    Google Scholar 

  5. Han T H, Lee J W, Choi C, Tan S, Lee C and Zhao Y 2019 Perovskite-polymer composite cross-linker approach for highly-stable and efficient perovskite solar cells. Nat. Commun. 10: 1–10

    Article  Google Scholar 

  6. Zhang M, Wang M, Yang Z, Li J and Qiu H 2018 Preparation of all-inorganic perovskite quantum dots-polymer composite for white LEDs application. J. Alloys Compd. 748: 537–545

    Article  Google Scholar 

  7. Xu Y-F, Yang M-Z, Chen B-X, Wang X-D, Chen H-Y and Kuang D-B 2017 A CsPbBr3 perovskite quantum dot/graphene oxide composite for photocatalytic CO2 reduction. J. Am. Chem. Soc. 139: 5660–5663

    Article  Google Scholar 

  8. Yao J, Xiong C, Dong L, Chen C, Lei Y and Chen L 2009 Enhancement of dielectric constant and piezoelectric coefficient of ceramic-polymer composites by interface chelation. J. Mater. Chem. 19: 2817–2821

    Article  Google Scholar 

  9. Bai Y, Cheng Z Y, Bharti V, Xu H S and Zhang Q M 2000 High-dielectric-constant ceramic-powder polymer composites. Appl. Phys. Lett. 76: 3804–3806

    Article  Google Scholar 

  10. Thomas P, Ravindran R S E and Varma K B R 2012 Dielectric properties of Poly(methyl methacrylate) (PMMA)/CaCu3Ti4O12 composites. In: Proc. IEEE Int. Conf. Prop. Appl. Dielectr. Mater. 1–4

  11. Qin P-L, Lei H-W, Zheng X-L, Liu Q, Tao H and Yang G 2016 Copper-doped chromium oxide hole-transporting layer for perovskite solar cells: Interface engineering and performance improvement. Adv. Mater. Interfaces. 3: 1500799

    Article  Google Scholar 

  12. Sahu A K, Satpathy S K and Rout S K 2020 Dielectric and frequency dependent transport properties of gadolinium doped bismuth ferrite. Trans. Electr. Electron. Mater. 21: 217–226. https://doi.org/10.1007/s42341-020-00170-7

    Article  Google Scholar 

  13. Satpathy S K, Sen S and Behera B 2017 Dielectric, electrical and magnetic properties of La doped BiFeO3–PbZrO3 composites. J. Mater. Sci. Mater. Electron. 28: 9102–9113. https://doi.org/10.1007/s10854-017-6644-9

    Article  Google Scholar 

  14. Sahu A K, Mallick P, Satpathy S K and Behera B 2021 Effect on structural, electrical and temperature sensing behavior of neodymium doped bismuth ferrite. Adv. Mater. Lett. 12: 1–7. https://doi.org/10.5185/amlett.2021.071648

    Article  Google Scholar 

  15. Satpathy S K, Mohanty N K and Behera A K 2019 Effect on electrical properties of Gd-doped BiFeO3–PbZrO3. Iran J. Sci. Technol. Trans. Sci. 43: 2017–2026. https://doi.org/10.1007/s40995-019-00682-9

    Article  Google Scholar 

  16. Mallick P and Satpathy S K 2021 Synthesis and characterization of Zinc doped Strontium Titanate. Int. J. Anesth Pain Med. 7: 37

    Google Scholar 

  17. Mallick P, Sahu A K and Satpathy S K 2022 Investigation on structural, dielectric, thermistor parameters and negative temperature coefficient behaviour of Nd, Gd, and La-doped bismuth ferrite. Trans. Electr. Electron. Mater. https://doi.org/10.1007/s42341-021-00379-0

    Article  Google Scholar 

  18. Mohanty D, Satpathy S K, Behera B and Mohapatra R K 2020 Dielectric and frequency dependent transport properties in magnesium doped CuFe2O4 composite. Mater. Today: Proc. 33: 5226–5231

    Google Scholar 

  19. Grandgirard J, Poinsot D, Krespi L, Nénon J P and Cortesero A M 2002 Costs of secondary parasitism in the facultative hyperparasitoid Pachycrepoideus dubius: Does host size matter? Entomol. Exp. Appl. 103: 239–248

    Article  Google Scholar 

  20. Thutiyaporn Thiwawong KOBT 2013 A humidity sensor based on silver nanoparticles thin film prepared by electrostatic spray deposition process. Adv. Mater. Sci. Eng. 2013: 1–7

    Google Scholar 

  21. Fiat Varol S, Babür G, Çankaya G and Kölemen U 2014 Synthesis of sol-gel derived nano-crystalline ZnO thin films as TCO window layer: Effect of sol aging and boron. RSC Adv. 4: 56645–56653

    Article  Google Scholar 

  22. Dome K, Podgorbunskikh E, Bychkov A and Lomovsky O 2020 Changes in the crystallinity degree of starch having different types of crystal structure after mechanical pretreatment. Polymers 12: 1–12

    Article  Google Scholar 

  23. Kumari A and Dasgupta Ghosh B 2018 A study of dielectric behavior of manganese doped barium titanate–polyimide composites. Adv. Polym. Technol. 37: 2270–2280

    Article  Google Scholar 

  24. Arya A and Sharma A L 2018 Effect of salt concentration on dielectric properties of Li-ion conducting blend polymer electrolytes. J. Mater. Sci. Mater. Electron. 29: 17903–17920

    Article  Google Scholar 

  25. Rayssi C, El Kossi S, Dhahri J and Khirouni K 2018 Frequency and temperature-dependence of dielectric permittivity and electric modulus studies of the solid solution Ca0.85Er0.1Ti1-: XCo4 x /3O3 (0 ≤ x ≤ 0.1). RSC Adv. 8: 17139–17150

    Article  Google Scholar 

  26. Paquin F, Rivnay J, Salleo A, Stingelin N and Silva C 2015 Multi-phase semicrystalline microstructures drive exciton dissociation in neat plastic semiconductors. J. Mater. Chem. C 3: 10715–10722

    Article  Google Scholar 

  27. Pascariu V, Avadanei O, Gasner P, Stoica I, Reverberi A P and Mitoseriu L 2013 Preparation and characterization of PbTiO3–epoxy resin compositionally graded thick films. Phase Transit. 86: 715–725

    Article  Google Scholar 

  28. Tamboli M S, Palei P K, Patil S S, Kulkarni M V, Maldar N N and Kale B B 2014 Polymethyl methacrylate (PMMA)–bismuth ferrite (BFO) nanocomposite: low loss and high dielectric constant materials with perceptible magnetic properties. Dalton Trans. 43: 13232–13241

    Article  Google Scholar 

  29. Singh P 2014 Ferroelectric polymer-ceramic composite thick films for energy storage applications. AIP Adv. 4: 87117

    Article  Google Scholar 

  30. Beena P and Jayanna H S 2019 Dielectric studies and AC conductivity of piezoelectric barium titanate ceramic polymer composites. Polym. Polym. Compos. 27: 619–625

    Google Scholar 

  31. Kobayashi Y, Tanase T, Tabata T, Miwa T and Konno M 2008 Fabrication and dielectric properties of the BaTiO3-polymer nano-composite thin films. J. Eur. Ceram. Soc. 28: 117–122

    Article  Google Scholar 

  32. Habib A, Stelzer N and Haubner R 2014 Fabrication of BaTiO3-PMMA polymer nanocomposite thin/thick films and their dielectric properties. Solid State Phenom. 151: 108–112

    Article  Google Scholar 

  33. Thakur S, Rai R, Bdikin I and Valente M A 2016 Impedance and modulus spectroscopy characterization of Tb modified Bi0.8A0.1Pb0.1Fe0.9Ti0.1O3 ceramics. Mater. Res. 19: 1–8

    Article  Google Scholar 

  34. Bag S, Das P and Behera B 2017 AC impedance spectroscopy and conductivity studies of Dy doped Bi4V2O11 ceramics. J. Theor. Appl. Phys. 11: 13–25

    Article  Google Scholar 

  35. Radoń A, Łukowiec D, Kremzer M, Mikuła J and Włodarczyk P 2018 Electrical conduction mechanism and dielectric properties of spherical shaped Fe3O4 nanoparticles synthesized by co-precipitation method. Materials (Basel, Switzerland). 11: 735

    Article  Google Scholar 

  36. Singh N K, Yadav M K and Fernandez C 2017 Electro catalytic properties of La1-xCuxCoO3 (0 ≤ x ≤ 0.8) film electrodes prepared by Malic Acid sol-gel method at pH = 3.75. Int. J. Electrochem. Sci. 12: 7128–7141

    Article  Google Scholar 

  37. Kaur P and Singh K 2020 Structural, thermal and electrical study of copper doped strontium zirconate. Ionics 26: 6233–6244

    Article  Google Scholar 

  38. Kumar S, Pal J, Kaur S, Malhi P S, Singh M and Babu P D 2019 The structural and magnetic properties, non- Debye relaxation and hopping mechanism in solutions. J. Asian Ceram. Soc. 7: 133–140

    Article  Google Scholar 

  39. Satpathy S K, Mohanty N K, Behera A K and Behera B 2014 Dielectric and electrical properties of 0.5(BiGd0.05Fe 0.95O3)-0.5(PbZrO3) composite. Mater. Sci.-Pol. 32: 59–65

    Article  Google Scholar 

  40. Singh S, Katyal S and Goswami N 2019 Dielectric and electrical study of zinc copper ferrite nanoparticles prepared by exploding wire technique. Appl. Phys. A. 125: 1–14

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santosh Ku. Satpathy.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mallick, P., Patra, R., Mohanty, D. et al. Development and characterization of copper doped perovskite-polymer composite through high-temperature technique. Sādhanā 47, 134 (2022). https://doi.org/10.1007/s12046-022-01904-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12046-022-01904-4

Keywords

Navigation