Skip to main content
Log in

Constitutive modeling for the tear fracture of rubber with filler particles

  • Published:
Sādhanā Aims and scope Submit manuscript

Abstract

This work presents the constitutive modeling for the tear fracture and its mechanical behavior of rubber with filler particles. A continuum mechanics-based analytical model is developed here to predict the mechanical properties of rubber with a suitably added filler. The model is then validated with the experimental results of the chloroprene and nitrile butadiene rubbers filled with different volume fractions of carbon black and carbon nanoparticles, respectively. Further, the tear fracture phenomenon of the filled rubber is modeled adopting a well-known Griffith criterion based on the developed constitutive model. The aimed tear fracture phenomenon is focused on a particular fracture test of mode-III, namely the trousers test, where two legs of a cut specimen are pulled horizontally apart. The results show that the fracture toughness of the filled rubber increases with the rise in the volume of filler particles. In general, the developed model will be helpful to the researchers in characterizing the material behavior of tires and other rubber-like materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Alemán J V, Alan V Chadwick, He J,Hess M, Horie K, Richard G Jones, Kratochvíl P, Meisel I,  Mita I, Moad G et al 2007 Definitions of terms relating to the structure and processing of sols, gels, networks, and inorganic-organic hybrid materials (iupac recommendations 2007). Pure Appl. Chem., 79(10): 1801–1829

    Article  Google Scholar 

  2. Kumar D and Sarangi S 2018 Data on the viscoelastic behavior of neoprene rubber. Data in Brief 21: 943

    Article  Google Scholar 

  3. Kumar D, Lateefi Md M and Sarangi S 2019 A phenomenological model for the viscoelastic behaviour of natural rubber.In: IOP Conference Series: Materials Science and Engineering, volume 577, page 012020. IOP Publishing

  4. Ogden R W, Non-Linear Elastic Deformations. ISBN 0-486-69648-0, 1984

  5. Muhr A H 2005 Modeling the stress-strain behavior of rubber. Rubber Chem. Technol. 78(3): 391–425

    Article  Google Scholar 

  6. Kumar D and Sarangi S 2018 Instability analysis of an electro-magneto-elastic actuator: a continuum mechanics approach. AIP Adv. 8(11): 115314

    Article  Google Scholar 

  7. Lateefi Md M, Kumar D and Sarangi S 2018 Stability analysis of a hyperelastic tube under large deformation. In: 2018 International Conference on Automation and Computational Engineering (ICACE), pages 234–239. IEEE

  8. Kumar D and Sarangi S 2019 Electromagnetostriction under large deformation: modeling with experimental validation. Mech. Mater. 128: 1-10

    Article  Google Scholar 

  9. Yoda R 1998 Elastomers for biomedical applications.J. Biomater. Sci. Polym. Ed., 9(6): 561–626

    Article  Google Scholar 

  10. Shanks R A et al 2013 General purpose elastomers: structure, chemistry, physics and performance. Adv. Elastomers I: 11–45

    Article  Google Scholar 

  11. Visakh P M, Thomas S, Chandra A K and Mathew A P 2013 Advances in elastomers. Springer

  12. Kumar D, Ghosh S, Roy S and Santapuri S 2021 Modeling and analysis of an electro-pneumatic braided muscle actuator. J. Intell. Mater. Syst. Struct. 32(4): 399–409

    Article  Google Scholar 

  13. Long Y and Shanks R A 1996 Pp–elastomer–filler hybrids. I. processing, microstructure, and mechanical properties. J. Appl. Polym. Sci. 61(11): 1877–1885

  14. Bartczak Z, Argon A S, Cohen R E and Weinberg M 1999 Toughness mechanism in semi-crystalline polymer blends: II. High-density polyethylene toughened with calcium carbonate filler particles. Polymer 40(9): 2347–2365

  15. Sangerano M, Pallaro E, Roppolo I and Rizza G 2009 UV-cured epoxy coating reinforced with sepiolite as inorganic filler. J. Mater. Sci. 44(12): 3165–3171

    Article  Google Scholar 

  16. Unal H, Mimaroglu A and Alkan M 2004 Mechanical properties and morphology of nylon-6 hybrid composites. Polym. Int. 53(1): 56–60

    Article  Google Scholar 

  17. Takahara A, Magome T and Kajiyama T 1994 Effect of glass fiber-matrix polymer interaction on fatigue characteristics of short glass fiber-reinforced poly (butylene terephthalate) based on dynamic viscoelastic measurement during the fatigue process. J. Polym. Sci. Part B: Polym. Phys. 32(5): 839–849

    Article  Google Scholar 

  18. Sau K P, Chaki T K and Khastgir D 1998 The change in conductivity of a rubber-carbon black composite subjected to different modes of pre-strain. Compos. A Appl. Sci. Manuf. 29(4): 363–370

    Article  Google Scholar 

  19. Joly S, Garnaud Gi, Ollitrault R, Bokobza L and Mark J E 2002 Organically modified layered silicates as reinforcing fillers for natural rubber. Chem. Mater. 14(10): 4202–4208

    Article  Google Scholar 

  20. Job A E, Oliveira F A, Alves N, Giacometti J A and LHC Mattoso 2003 Conductive composites of natural rubber and carbon black for pressure sensors. Synthetic Metals 99–100

  21. Pötschke P, Bhattacharyya A R and Janke A 2003 Morphology and electrical resistivity of melt mixed blends of polyethylene and carbon nanotube filled polycarbonate. Polymer 44(26): 8061–8069

    Article  Google Scholar 

  22. LeBaron P C and Pinnavaia T J 2001 Clay nanolayer reinforcement of a silicone elastomer. Chem. Mater. 13(10): 3760–3765

    Article  Google Scholar 

  23. Reichert W F, Göritz D and Duschl E J 1993 The double network, a model describing filled elastomers. Polymer 34(6): 1216–1221

    Article  Google Scholar 

  24. Farris R J 1968 The influence of vacuole formation on the response and failure of filled elastomers. Trans. Soc. Rheol. 12(2): 315–334

    Article  Google Scholar 

  25. Berriot J, Lequeux F, Monnerie L, Montes H, Long D and Sotta P 2002 Filler–elastomer interaction in model filled rubbers, a 1h nmr study. J. Non-Crystalline Solids 307: 719–724

  26. Leonard M, Wang N, Lopez-Pamies O and Nakamura T 2020 The nonlinear elastic response of filled elastomers: Experiments vs. theory for the basic case of particulate fillers of micrometer size. J. Mech. Phys. Solids 135: 103781

  27. Sawyers K N and Rivlin R S 1997 The trousers test for rupture. In: Collected Papers of RS Rivlin, pages 2643–2648. Springer

  28. Busfield J J C, Davies C K L and Thomas A G 1996 Aspects of fracture in rubber components.Prog. Rubber Plastics Technol. 12(3): 191–207

  29. Ahmad D, Sahu S K and Patra K 2019 Fracture toughness, hysteresis and stretchability of dielectric elastomers under equibiaxial and biaxial loading. Polym. Testing 79: 106038

    Article  Google Scholar 

  30. Horgan C O and Schwartz J G 2005 Constitutive modeling and the trousers test for fracture of rubber-like materials. J. Mech. Phys. Solids 53(3): 545–564

    Article  Google Scholar 

  31. Horgan C O and Smayda M G 2012 The trousers test for tearing of soft biomaterials. Int. J. Solids Struct. 49(1): 161–169

    Article  Google Scholar 

  32. Guth E 1945 Theory of filler reinforcement. Rubber Chem. Technol. 18(3): 596–604

  33. Waluyo S 2020 Composite dielectric elastomers modeling based on statistical mechanics. Mech. Res. Commun. 110: 103623

    Article  Google Scholar 

  34. Beatty M F 1987 Topics in finite elasticity: hyperelasticity of rubber, elastomers and biological tissues-with examples

  35. Rivlin R S and Saunders D W 1951 Large elastic deformations of isotropic materials vii. experiments on the deformation of rubber. Philos. Trans. R. Soc. Lond. Series A Math. Phys. Sci. 243(865): 251–288

  36. Bergstrom J S and Boyce M C 1999 Mechanical behavior of particle filled elastomers. Rubber Chem. Technol. 72(4): 633–656

    Article  Google Scholar 

  37. Chen L and Zheng Y 2012 Study on curve fitting based on least square method. J. Wuxi Inst. Technol. 11(5): 52–55

  38. Mahmoud W E, Al-Ghamdi A A, Al-Marzouki F and Al-Ameer S 2011 Evaluation and modeling of the mechanical behavior of carbon nanoparticle/rubber-modified polyethylene nanocomposites. J. Appl. Polym. Sci. 122(5): 3023–3029

    Article  Google Scholar 

  39. Zehnder A T 2013 Griffith Theory of Fracture, pages 1570–1573. Springer US, Boston, MA

  40. Irwin G R 1948 Fracturing of metals.ASM, Cleveland 147: 19–9

    Google Scholar 

  41. Rivlin R S and Gr Thomas A 1953 Rupture of rubber. I. Characteristic energy for tearing. J. Polymer Sci. 10(3): 291–318

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gour, S., Kumar, D. & Yadav, V. Constitutive modeling for the tear fracture of rubber with filler particles. Sādhanā 47, 82 (2022). https://doi.org/10.1007/s12046-022-01858-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12046-022-01858-7

Keywords

Navigation