Skip to main content
Log in

A comparative study of the pulsating flames with different air inlet port geometrical shape

  • Published:
Sādhanā Aims and scope Submit manuscript

Abstract

The present study represents a numerical simulation of the experimental diffusion combustion of liquified petroleum gas with pulsating air in a cylindrical chamber. The simulation focused on the effect of mixing air inlet square shape with pulsation combustion on the temperature, combustion products velocity, turbulent viscosity, carbon monoxide, mass fraction of nitric oxide and soot. The simulation is applied by Ansys fluent 16 commercial packages solving probability density function equation and large eddy simulation. The sinusoidal air inlet velocity had a frequency of 200 rad/s with 3.4 m/s velocity amplitude. Two air inlet ports are used circular and a square shape which all have an equivalent inlet area of 120 mm2. The numerical results are compared to experimental results of circular shape and achieve an acceptable agreement. It is noticed that the excitation leads to widening of the flame zone and a decrease in the flame length by 55%, also the average temperature decreases from 2050 to 1650 K in square shape and from 1900 to 1600 K in circular shape. The mass fraction of carbon monoxide, nitrogen oxide, and soot are reduced by 23%, 88% and 60%, respectively due to the pulsation and the addition of the sharp corner to the pulsation reduced them by 30%, 92%, and 70%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19

Similar content being viewed by others

Abbreviations

Re:

Reynolds number ≡ ratio of inertial forces to viscous forces (dimensionless)

∇:

Gradient operator

y + :

Dimensionless distance from the wall

µ:

Dynamic viscosity (cP, Pa-s, lbm /ft-s)

\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {v}\) :

Overall velocity vector (m/s, ft/s)

f:

Frequency (rad/s)

\(\rho\) :

Density (kg/m3)

\(\vec{F}\) :

Force vector (N)

H:

Total enthalpy (energy/mass, energy/mole)

S:

Total entropy

\(\overrightarrow{g}\) :

Gravitational acceleration (m/s2, ft/s2); standard values = 9.80665 m/s2, 32.1740 ft/s2

ℓ, l, L:

Length scale (m, cm, ft, in)

K:

Equilibrium constant

\({S}_{ij}\) :

Mean rate-of-strain tensor (s – 1)

T:

Temperature (K, o C, o R, o F)

t:

Time (s)

C P :

Heat capacity at constant pressure,volume (J/kg K)

P:

Pressure (Pa, atm, mm Hg)

St:

Strouhal number

LPG:

Liquefied petroleum gas

LES:

Large eddy simulation

TKE:

Turbulent kinetic energy

References

  1. Schadow K, Gutmark E, Parr D and Wilson K 2004 Selective control of flow coherence in triangular jets. Exp. Fluids 6: 129–135

    Article  Google Scholar 

  2. Gessner F B and Jones J B 1965 On some aspects of fully-developed turbulent flow in rectangular channels. J. Fluid Mech. 23: 689–713

    Article  Google Scholar 

  3. Gutmark E, Schadow K, Parr T, Hanson-Parr D and Wilson K 1989 Noncircular jets in combustion systems. Exp. Fluids 7: 248–258

    Article  Google Scholar 

  4. Gutmark E, Schadow K C and Wilson K J 1991 Subsonic and supersonic combustion using noncircular injectors. J. Propuls. Power 7: 240–249

    Article  Google Scholar 

  5. Gutmark E J and Grinstein F F 1999 Flow control with noncircular jets. Annu. Rev. Fluid Mech. 31: 239–272

    Article  Google Scholar 

  6. Iyogun C and Birouk M 2008 Effect of fuel nozzle geometry on the stability of a turbulent jet methane flame. Combust. Sci. Technol. 180: 2186–2209

    Article  Google Scholar 

  7. Gollahalli S and Subba S 1997 Partially premixed laminar gas flames from triangular burners. J. Propuls. Power 13: 226–232

    Article  Google Scholar 

  8. Miller R S, Madnia C K and Givi P 1995 Numerical simulation of non-circular jets. Comput. Fluids 24(1): 1–25

    Article  Google Scholar 

  9. Quinn W R 1992 Streamwise evolution of a square jet cross section. AIAA J. 30: 2852–2857

    Article  Google Scholar 

  10. Dubey R K, Black D L, McQuay M Q and Carvalho Jr J A 1997 The effect of acoustics on an ethanol spray flame in a propane-fired pulse combustor. J. Combust. Flame 110(1–2): 25–38

    Article  Google Scholar 

  11. Zellhuber M, Meraner C, Kulkarni R, Polifke W and Schuermans B 2013 Large eddy simulation of flame response to transverse acoustic excitation in a model reheat combustor. J. Eng. Gas Turbines Power 135: 9

    Article  Google Scholar 

  12. Tajiri K, Menon S 2001 LES of combustion dynamics in a pulse combustor. 39th Aerospace Sciences Meeting and Exhibit. p. 194

  13. Kitchen 1987 J. Pulse combustion apparatus

  14. Balachandran R, Ayoola B, Kaminski C, Dowling A and Mastorakos E 2005 Experimental investigation of the nonlinear response of turbulent premixed flames to imposed inlet velocity oscillations. J. Combust. Flame 143: 37–55

    Article  Google Scholar 

  15. Loretero M E and Huang R F 2010 Effects of acoustic excitation on a swirling diffusion flame. J. Eng. Gas Turbines Power 132: 12

    Article  Google Scholar 

  16. Zinn B T 1992 Pulse combustion: recent applications and research issues. Symposium (International) on Combustion: Elsevier. P. 1297–1305

  17. El Behery R E, Mohamad A A and Kamal M M 2005 Combustion enhancement of a gas flare using acoustical excitation. Combust. Sci. Technol. 177(9): 1627–1659

    Article  Google Scholar 

  18. Mikofski M A, Williams T C, Shaddix C R and Blevins L G 2006 Flame height measurement of laminar inverse diffusion flames. J. Combust. Flame 146: 63–72

    Article  Google Scholar 

  19. Elbaz A M and Roberts W L 2014 Experimental characterization of methane inverse diffusion flame. Combust. Sci. Technol. 186: 1249–1272

    Article  Google Scholar 

  20. Clausing E M, Senser D W and Laurendeau N M 1997 Peclet correlation for stability of inverse diffusion flames in methane-air cross flows. J. Combust. Flame 110: 405–408

    Article  Google Scholar 

  21. Wentzell J C 1999 Characteristics and structure of inverse flames of natural gas, Queen's University at Kingston

  22. Partridge W P Jr and Laurendeau N M 1995 Nitric oxide formation by inverse diffusion flames in staged-air burners. J. Fuel. 74: 1424–1430

    Article  Google Scholar 

  23. Sze L, Cheung C S and Leung C W J C 2006 Appearance, temperature and NOx emission of two inverse diffusion flames with different port design. J. Combust. Flame. 144: 237–248

    Article  Google Scholar 

  24. Reitz R, Ogawa H, Payri R, Fansler T, Kokjohn S and Moriyoshi Y 2020 The future of the internal combustion engine. SAGE Publications, London

    Google Scholar 

  25. Burke S and Schumann T J I 1928 Diffusion flames. J. Ind. Eng. Chem. 20: 998–1004

    Article  Google Scholar 

  26. Bilger R W 1976 The structure of diffusion flames. J. Combust. Sci. Technol. 13: 155–170

    Article  Google Scholar 

  27. Yin Y, Li M, Moulinec C and Emerson D 2015 Wall-adapting local eddy-viscosity turbulence model for TELEMAC3D. Proceedings of the XXII TELEMAC-MASCARET Technical User Conference October 15–16, 2037. p. 59–64

  28. Richardson L F 2007 Weather prediction by numerical process. Cambridge University Press

    Book  Google Scholar 

  29. Silva C, Franca F and Vielmo H 2007 Analysis of the turbulent, non-premixed combustion of natural gas in a cylindrical chamber with and without thermal radiation. J Combust. Sci. Technol. 179: 1605–1630

    Article  Google Scholar 

  30. Hong S, Wooldridge M S, Im H G, Assanis D N and Pitsch H 2005 Development and application of a comprehensive soot model for 3D CFD reacting flow studies in a diesel engine. J Combust. Flame 143: 11–26

    Article  Google Scholar 

  31. Magdy M, Kamal M, Hamed A M, Hussin A E and Torky W 2020 Study the effect of air pulsation on the flame characteristics. J. Eur. J. Comput. Mech. 2020: 279–302

    MathSciNet  Google Scholar 

  32. Magdy M, Kamal M, Hamed A M, Hussin A E and Aboelsoud W 2021 Numerical and experimental study of inverse diffusion LPG-air flames pulsation. Eur. J. Comput. Mech. 2021: 169–196

    MathSciNet  Google Scholar 

  33. Hamed A, Moustafa A, Kamal M and Hussin A 2020 Single and double flow pulsations of normal and inverse partially premixed methane-air flames. Combust. Sci. Technol. 2020: 1–31

    Article  Google Scholar 

  34. ANSYS FI 2013 A.N.S.Y.S Theory Guide 15

  35. Kim S H and Huh K 2004 Second-order conditional moment closure modeling of turbulent piloted jet diffusion flames. J. Combust. Flame. 138: 336–352

    Article  Google Scholar 

  36. Yılmaz İ, Taştan M and İlbaşTarhan M C 2013 Effect of turbulence and radiation models on combustion characteristics in propane–hydrogen diffusion flames. J. Energy Convers. Manag. 72: 179–186

    Article  Google Scholar 

  37. Vermeulen P J and Ramesh V 1998 Acoustically controlled combustor NOx. International Gas Turbine and Aeroengine Congress and Exhibition, American Society of Mechanical Engineers Digital Collection ASME

  38. Vermeulen P, Grabunski P and Ramesh V 1992 Mixing of an acoustically excited air jet with a confined hot crossflow. J. Eng. Gas Turbines Power. 114(1): 46–54

    Article  Google Scholar 

  39. Vermeulen P and Ramesh V 1997 NOx measurements for combustor with acoustically controlled primary zone. J. Eng. Gas Turbines Power. 119(3): 559–565

    Article  Google Scholar 

  40. Delichatsios M and Orloff L 1989 Effects of turbulence on flame radiation from diffusion flames. Symposium (International) on Combustion: Elsevier, pp. 1271–1279

  41. Lai C H, Reibenspies J H and Darensbourg M Y 1996 Thiolate bridged nickel–iron complexes containing both iron (0) and iron (II) carbonyls. J. Angew. Chemie Int. Edition Engl. 35: 2390–2393

    Article  Google Scholar 

  42. Dec J E, Keller J O and Arpaci V S 1992 Heat transfer enhancement in the oscillating turbulent flow of a pulse combustor tail pipe. J. Int. J. Heat Mass Transf. 35: 2311–2325

    Article  Google Scholar 

  43. Kamal M M 2013 A comparative study of the port geometrical effects on sharp corners’ jet triple flames. Exp. Therm. Fluid Sci. 51: 149–163

    Article  Google Scholar 

  44. Wu H-W, Wang R-H, Ou D-J, Chen Y-C and Chen T 2011 Reduction of smoke and nitrogen oxides of a partial HCCI engine using premixed gasoline and ethanol with air. J. Appl. Energy 88: 3882–3890

    Article  Google Scholar 

  45. Yamada H, Suzaki K, Sakanashi H, Choi N and Tezaki A 2005 Kinetic measurements in homogeneous charge compression of dimethyl ether: role of intermediate formaldehyde controlling chain branching in the low-temperature oxidation mechanism. J. Combust. Flame 140(1–2): 24–33

    Article  Google Scholar 

  46. Flowers D, Aceves S, Westbrook C and Smith J 2001 Detailed chemical kinetic simulation of natural gas HCCI combustion: gas composition effects and investigation of control strategies. J. Eng. Gas Turbines Power 123: 433–439

    Article  Google Scholar 

  47. Chun-hua Z, Jiang-Ru P, Juan-Juan T and Jing L I 2011 Effects of intake temperature and excessive air coefficient on combustion characteristics and emissions of HCCI combustion. J. Procedia Environ. Sci. 11: 1119

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Magdy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magdy, M., Kamal, M., Hamed, A. et al. A comparative study of the pulsating flames with different air inlet port geometrical shape. Sādhanā 47, 31 (2022). https://doi.org/10.1007/s12046-021-01799-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12046-021-01799-7

Keywords

Navigation