Skip to main content
Log in

Thermal-diffusion and diffusion-thermo effects on squeezing flow of unsteady magneto-hydrodynamic Casson fluid between two parallel plates with thermal radiation

  • Published:
Sādhanā Aims and scope Submit manuscript

Abstract

Present numerical study examines the heat and mass transfer characteristics of unsteady magneto-hydrodynamic squeezing flow of Casson fluid between two parallel plates with viscous and Joule dissipation effects in the presence of chemical reaction. The influence of Soret and Dufour parameters on squeezing flow is investigated along with thermal radiation and heat source/sink effects. The heat and mass transfer behaviour of squeezing flow is analysed by considering the rheological Casson fluid model. The present physical problem is governed by the set of nonlinear coupled time-dependent partial differential equations (PDEs). The method of similarity transformation approach is used to reduce the system of PDEs to a system of nonlinear ordinary differential equations (ODEs). Further, the Runge–Kutta fourth order integration scheme with shooting method (RK-SM) is used to solve the reduced ODEs. Numerical computations are performed for different sets of control parameters. The non-Newtonian flow behaviour of Casson fluid is presented in terms of graphs and tables. It is remarked that the temperature field is enhanced for increasing values of Hartmann number. Also, increasing Casson fluid parameter increases the velocity field. Concentration field is diminished for enhancing values of Soret parameter. Finally, the comparison between present similarity solutions and previously published results shows the accuracy of the current results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27

Similar content being viewed by others

Abbreviations

\( S \) :

squeezing number

\( Ha \) :

Hartmann number

\( Ec \) :

Eckert number

\( R \) :

radiation parameter

\( Q \) :

heat generation or absorption parameter

\( Q^{*} \) :

volumetric heat generation or absorption coefficient

\( Pr \) :

Prandtl number

\( Sc \) :

Schmidt number

\( Sr \) :

Soret number

\( Du \) :

Dufour number

\( Kr \) :

chemical reaction parameter

\( \kappa \) :

thermal conductivity (W m−1 K−1)

\( k^{*} \) :

absorption coefficient (m−1)

\( D_{m} \) :

coefficient of mass diffusion

\( C_{f} \) :

skin-friction coefficient

\( Nu \) :

Nusselt number

\( Sh \) :

Sherwood number

\( Re_{x} \) :

Reynolds number

\( p \) :

pressure (Pa)

\( C_{p} \) :

specific heat capacity at constant pressure (J kg−1 K−1)

\( C_{s} \) :

specific heat capacity at constant concentration

\( B_{0} \) :

uniform magnetic field

\( l \) :

initial distance between the parallel plates (m)

\( T \) :

dimensional fluid temperature (K)

\( T_{w} \) :

wall temperature (K)

\( T_{\infty } \) :

ambient fluid temperature (K)

\( C \) :

dimensional fluid concentration (mol/m3)

\( C_{w} \) :

wall concentration (mol/m3)

\( C_{\infty } \) :

ambient fluid concentration (mol/m3)

\( k_{1} \) :

chemical reaction coefficient

\( u, v \) :

dimensional velocity components along \( x, y \) directions (m s−1)

\( F^{\prime}, F \) :

non-dimensional velocity components along axial and radial directions

\( \beta \) :

Casson fluid parameter

\( \sigma \) :

electrical conductivity (s m−1)

\( \sigma^{*} \) :

Stefan–Boltzmann constant (W m−2 K−4)

\( \eta \) :

similarity variable

\( \theta \) :

dimensionless temperature

\( \phi \) :

dimensionless concentration

\( \rho \) :

fluid density (kg m−3)

\( \mu \) :

dynamic viscosity (Ns m−2)

\( \alpha \) :

characteristic parameter of the squeezing motion of the plate (s−1)

\( \nu \) :

kinematic viscosity of the fluid (m2 s−1)

References

  1. Lawal A and Kalyon D M 1998 Squeezing flow of viscoplastic fluids subject to wall slip. Polym. Eng. Sci. 38(11): 1793–1804

    Article  Google Scholar 

  2. Maki E R, Kuzma D C and Donnelly R J 1966 Magneto-hydrodynamic lubrication flow between parallel plates. J. Fluid Mech. 26(3): 537–543

    Article  Google Scholar 

  3. Dorier C and Tichy J 1992 Behaviour of a Bingham-like viscous fluid in lubrication flows. J. Non-Newton. Fluid Mech. 45: 291–310

    Article  Google Scholar 

  4. Mohsin B B, Ahmed N, Adnan, Khan U and Mohyud-Din S T 2017 A bio-convection model for a squeezing flow of nanofluid between parallel plates in the presence of gyrotactic microorganisms. Eur. Phys. J. Plus 132 (187): 1–12

    Google Scholar 

  5. Collyer A A and Clegg D W 1998 Rheological measurement, 2nd ed. London, UK: Chapman & Hali

    Book  Google Scholar 

  6. Khan H, Qayyum M, Khan O and Ali M 2016 Unsteady squeezing flow of Casson fluid with magneto-hydrodynamic effect and passing through porous medium. Math. Probl. Eng. https://doi.org/10.1155/2016/4293721

    Article  MathSciNet  Google Scholar 

  7. Stefan M J 1874 Versuchüber die scheinbare adhesion. Sitzungsber Sächs Akad Wiss Wein. Math-Nat Wiss Kl 69: 713–721

    Google Scholar 

  8. Reynolds O 1886 On the theory of lubrication. Philos. Trans. R. Soc. Lond. 177: 157–234

    Article  Google Scholar 

  9. Archibald F R 1956 Load capacity and time relations for squeeze films. Trans. ASME 78: 231–245

    Google Scholar 

  10. Grimm G J 1976 Squeezing flows of Newtonian liquid films: an analysis includes the fluid inertia. Appl. Sci. Res. 32(2): 149–166

    Article  Google Scholar 

  11. Wolfe W A 1965 Squeeze film pressures. Appl. Sci. Res. 14: 77–90

    Article  Google Scholar 

  12. Kuzma D C 1968 Fluid inertia effects in squeeze films. Appl. Sci. Res. 18: 15–20

    Article  Google Scholar 

  13. Tichy J A and Winer W O 1970 Inertial considerations in parallel circular squeeze film bearings. J. Lubr. Technol. 92: 588–592

    Article  Google Scholar 

  14. Jackson J D 1962 A study of squeezing flow. Appl. Sci. Res. 11: 148–152

    Article  Google Scholar 

  15. Mustafa M, Hayat T and Obaidat S 2012 On heat and mass transfer in the unsteady squeezing flow between parallel plates. Meccanica 47: 1581–1589

    Article  MathSciNet  Google Scholar 

  16. Siddiqui A M, Irum S and Ansari A R 2008 Unsteady squeezing flow of a viscous MHD fluid between parallel plates, a solution using the homotopy perturbation method. Math. Model. Anal. 13(4): 565–576

    Article  MathSciNet  Google Scholar 

  17. Domairry G and Aziz A 2009 Approximate analysis of MHD squeeze flow between two parallel disks with suction or injection by homotopy perturbation method. Math. Probl. Eng. https://doi.org/10.1155/2009/603916

    Article  Google Scholar 

  18. Duwairi H M, Tashtoush B and Damseh R A 2004 On heat transfer effects of a viscous fluid squeezed and extruded between two parallel plates. Heat Mass Transf. 41(2): 112–117

    Google Scholar 

  19. Mahmood M, Asghar S and Hossain M A 2007 Squeezed flow and heat transfer over a porous surface for viscous fluid. Heat Mass Transf. 44: 165–173

    Article  Google Scholar 

  20. Tashtoush B, Tahat M and Probert D 2001 Heat transfers and radial flows via a viscous fluid squeezed between two parallel disks. Appl. Energy 68: 275–288

    Article  Google Scholar 

  21. Muhaimin, Kandasamy R and Hashim I 2010 Effect of chemical reaction, heat and mass transfer on nonlinear boundary layer past a porous shrinking sheet in the presence of suction. Nucl. Eng. Des. 240: 933–939

    Article  Google Scholar 

  22. Bahadir A R and Abbasov T 2011 A numerical approach to hydromagnetic squeezed flow and heat transfer between two parallel disks. Ind. Lubr. Tribol. 63(2): 63–71

    Article  Google Scholar 

  23. Weaver J A and Viskanta R 1991 Natural convection due to horizontal temperature and concentration gradients-2. Species interdiffusion, Soret and Dufour effects. Int. J. Heat Mass Transf. 34(12): 3121–3133

    Article  Google Scholar 

  24. Raju C S K and Sandeep N 2016 Heat and mass transfer in MHD non-Newtonian bio-convection flow over a rotating cone/plate with cross diffusion. J. Mol. Liq. 215: 115–126

    Article  Google Scholar 

  25. Sulochana C, Payad S S and Sandeep N 2015 Non-uniform heat source or sink effect on the flow of 3D Casson fluid in the presence of Soret and thermal radiation. Int. J. Eng. Res. Afr. 20: 112–129

    Article  Google Scholar 

  26. Nawaz M, Hayat T and Alsaedi A 2012 Dufour and Soret effects on MHD flow of viscous fluid between radially stretching sheets in porous medium. Appl. Math. Mech. Engl. Ed. 33(11): 1403–1418

    Article  MathSciNet  Google Scholar 

  27. Ojjela O and Kumar N N 2016 Unsteady MHD mixed convective flow of chemically reacting and radiating couple stress fluid in a porous medium between parallel plates with Soret and Dufour effects. Arab. J. Sci. Eng. 41: 1941–1953

    Article  Google Scholar 

  28. Khan U, Ahmed N and Mohyud-Din S T 2016 Thermo-diffusion, diffusion-thermo and chemical reaction effects on MHD flow of viscous fluid in divergent and convergent channels. Chem. Eng. Sci. 141(17): 17–27

    Article  Google Scholar 

  29. Khan S I, Mohyud-Din S T and Mohsin B B 2017 Thermo-diffusion and diffuso-thermo effects on MHD squeezing flow between parallel disks. Surf. Rev. Lett. 24(2): 1750022-10

    Article  Google Scholar 

  30. Ahmed N, Khan U, Khan S I, Bano S and Mohyud-Din S T 2017 Effects on magnetic field in squeezing flow of a Casson fluid between parallel plates. J. King Saud Univ. Sci. 29: 119–125

    Article  Google Scholar 

  31. Mohyud-Din S T, Usman M, Wang W and Hamid M 2017 A study of heat transfer analysis for squeezing flow of a Casson fluid via differential transform method. Neural Comput. Appl. 30(10): 3253–3264

    Article  Google Scholar 

  32. Cebeci T and Bradshaw P 1984 Physical and computational aspects of convective heat transfer. New York, USA: Springer-Verlag

    Book  Google Scholar 

  33. Kiusalaas J 2005 Numerical methods in engineering with MATLAB. UK: Cambridge University Press

    Book  Google Scholar 

  34. Butcher J C 2016 Numerical methods for ordinary differential equations. UK: John Wiley & Sons

    Book  Google Scholar 

  35. Butcher J C 1975 A stability property of implicit Runge–Kutta methods. BIT Numer. Math. 15: 358–361

    Article  Google Scholar 

  36. Butcher J C and Wanner G 1996 Runge–Kutta methods: some historical notes. Appl. Numer. Math. 22: 113–151

    Article  MathSciNet  Google Scholar 

  37. Houwen P J V D, Wolkenfelt P H M and Baker C T H 1981 Convergence and stability analysis for modified Runge–Kutta methods in the numerical treatment of second-kind Volterra integral equations. IMA J. Numer. Anal. 1: 303–328

    Article  MathSciNet  Google Scholar 

  38. Debrabant K and Strehmel K 2005 Convergence of Runge–Kutta methods applied to linear partial differential-algebraic equations. Appl. Numer. Math. 53: 213–229

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors wish to express their gratitude to the reviewers who highlighted important areas for improvement in this earlier draft of the article. Their suggestions have served specifically to enhance the clarity and depth of the interpretation of results in the revised manuscript. One of the author, Usha Shankar, wishes to thank Karnataka Power Corporation Limited, Raichur Thermal Power Station, Shaktinagar, for the encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N B Naduvinamani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naduvinamani, N.B., Shankar, U. Thermal-diffusion and diffusion-thermo effects on squeezing flow of unsteady magneto-hydrodynamic Casson fluid between two parallel plates with thermal radiation. Sādhanā 44, 175 (2019). https://doi.org/10.1007/s12046-019-1154-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12046-019-1154-5

Keywords

Navigation