Advertisement

Sādhanā

, 44:99 | Cite as

Novel RNS-to-binary converters for the three-moduli set {2m − 1, 2m, 2m + 1}

  • P S Phalguna
  • Dattaguru V Kamat
  • P V Ananda MohanEmail author
Article
  • 39 Downloads

Abstract

In this paper, Mixed Radix Conversion (MRC)-based Residue Number System (RNS)-to-binary converters for the three-moduli set {2m − 1, 2m, 2m + 1} are presented. The proposed reverse converters are evaluated and compared to reverse converters proposed earlier in literature using Chinese Remainder Theorem (CRT) and New CRT for this moduli set as well as two four-moduli sets {2n − 1, 2n, 2n + 1, 2n+1 − 1} and {2n − 1, 2n, 2n + 1, 2n+1 + 1} regarding hardware requirement and conversion time.

Keywords

Residue Number System reverse converter three-moduli set CRT Mixed Radix Conversion 

References

  1. 1.
    Szabo N S and Tanaka R I 1967 Residue Arithmetic and Its Applications to Computer Technology. New York: Mc-Graw HillzbMATHGoogle Scholar
  2. 2.
    Ananda Mohan P V 2016 Residue Number Systems: Theory and Applications. Basel: BirkhauserCrossRefGoogle Scholar
  3. 3.
    Omondi A and Premkumar A B 2007 Residue Number System Theory and Implementation, vol. 2. London: Imperial College PressCrossRefGoogle Scholar
  4. 4.
    Soderstrand M A, Jullien G A, Jenkins W K and Taylor F (Eds.) 1986 Residue Number System Arithmetic: Modern Applications in Digital Signal Processing. Piscataway: IEEE PresszbMATHGoogle Scholar
  5. 5.
    Premkumar A B 1992 An RNS to binary converter in {2n + 1, 2n, 2n − 1} moduli set. IEEE Trans. Circ. Syst. II: Analog Digit. Signal Process. 39: 480–482CrossRefGoogle Scholar
  6. 6.
    Premkumar A B 1995 An RNS to binary converter in a three moduli set with common factors. IEEE Trans. Circ. Syst. II: Analog Digit. Signal Process. 42: 298–301CrossRefGoogle Scholar
  7. 7.
    Andraros S and Ahmad H 1988 A new efficient memory-less residue to binary converter. IEEE Trans. Circ. Syst. 35: 1441–1444CrossRefGoogle Scholar
  8. 8.
    Piestrak S J 1995 A high-speed realization of residue to binary system conversion. IEEE Trans. Circ. Syst. II: Analog Digit. Signal Process. 42: 661–663CrossRefGoogle Scholar
  9. 9.
    Dhurkadas A 1998 Comments on ‘A high-speed realization of a residue to binary number system converter’. IEEE Trans. Circ. Syst. II: Analog Digit. Signal Process. 45: 446–447CrossRefGoogle Scholar
  10. 10.
    Bhardwaj M, Premkumar A B and Srikanthan T 1998 Breaking the 2n-bit carry propagation barrier in residue to binary conversion for the {2n − 1, 2n, 2n + 1} moduli set. IEEE Trans. Circ. Syst. I: Fund. Theor. Appl. 45: 998–1002CrossRefGoogle Scholar
  11. 11.
    Wang Z, Jullien G A and Miller W C 2000 An improved residue to binary converter. IEEE Trans. Circ. Syst. I: Fund. Theor. Appl. 47: 1437–1440MathSciNetzbMATHGoogle Scholar
  12. 12.
    Wang Y, Song X, Aboulhamid M and Shen H 2002 Adder based residue to binary number converters for {2n − 1, 2n, 2n + 1}. IEEE Trans. Signal Process. 50: 1772–1779MathSciNetCrossRefGoogle Scholar
  13. 13.
    Hiasat A A and Abdel-Aty-Zohdy H S 1998 Residue to binary arithmetic converter for the moduli set {2k, 2k − 1, 2k–1 − 1}. IEEE Trans. Circ. Syst. II: Analog Digit. Signal Process. 45: 204–209CrossRefGoogle Scholar
  14. 14.
    Wang W, Swamy M N S, Ahmad M O and Wang Y 2000 A high-speed residue-to-binary converter for three moduli {2k, 2k − 1, 2k−1 − 1} RNS and a scheme for its VLSI implementation. IEEE Trans. Circ. Syst. II: Analog Digit. Signal Process. 47: 1576–1581CrossRefGoogle Scholar
  15. 15.
    Wang W, Swamy M N S, Ahmad M O and Wang Y 2002 A note on ‘A high-speed residue-to-binary converter for thee moduli {2k, 2k − 1, 2k−1 − 1} RNS and a scheme for its VLSI implementation. IEEE Trans. Circ. Syst. II: Analog Digit. Signal Process. 49: 230CrossRefGoogle Scholar
  16. 16.
    Ananda Mohan P V 2008 New residue to binary converters for the moduli set {2k, 2k − 1, 2k−1 − 1}. In: Proceedings of the IEEE Region 10 Conference (TENCON 2008), pp. 1–6Google Scholar
  17. 17.
    Chaves R and Sousa L 2004 {2n + 1, 2n+k, 2n − 1}: a new RNS moduli set extension. In: Proceedings of the Euromicro Symposium on Digital System Design (DSD): Architectures, Methods and Tool, pp. 210–217Google Scholar
  18. 18.
    Premkumar A B, Bhardwaj M and Srikanthan T 1998 High-speed and low-cost reverse converters for the {2n − 1, 2n, 2n + 1} moduli set. IEEE Trans. Circ. Syst. II: Analog Digit. Signal Process. 45: 903–908CrossRefGoogle Scholar
  19. 19.
    Wang Y, Swamy M N S and Ahmad M O 1999 Residue-to-binary number converters for three moduli sets. IEEE Trans. Circ. Syst. II: Analog Digit. Signal Process. 46: 180–183CrossRefGoogle Scholar
  20. 20.
    Gbolagade K A and Cotofana S D 2008 An efficient RNS to binary converter using the moduli set {2n − 1, 2n, 2n + 1}. In: Proceedings of the XXIII Conference on Design of Circuits and Integrated Systems (DCIS) Google Scholar
  21. 21.
    Gbolagade K A, Voicu G R and Cotofana S D 2011 An efficient FPGA design of residue-to-binary converter for the moduli set {2n + 1, 2n, 2n–1}. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 19: 1500–1503CrossRefGoogle Scholar
  22. 22.
    Wang Y 2000 Residue to binary converters based on New Chinese Remainder theorems. IEEE Trans. Circ. Syst. II: Analog Digit. Signal Process. 47: 197–205CrossRefGoogle Scholar
  23. 23.
    Swartzlander Jr. E E 1980 Merged arithmetic. IEEE Trans. Comput. 29: 946–950CrossRefGoogle Scholar
  24. 24.
    Cao B, Srikanthan T and Chang C H 2005 Efficient reverse converters for the four-moduli sets {2n − 1, 2n, 2n + 1, 2n+1 − 1} and {2n − 1, 2n, 2n + 1, 2n−1 − 1}. IEE Proc. Comput. Digit. Tech. 152: 687–696CrossRefGoogle Scholar
  25. 25.
    Ananda Mohan P V and Premkumar A B 2007 RNS to binary converters for two four moduli sets {2n − 1, 2n, 2n + 1, 2n+1 − 1} and {2n − 1, 2n, 2n + 1, 2n+1 + 1}. IEEE Trans. Circ. Syst. I: Reg. Papers 54: 1245–1254CrossRefGoogle Scholar
  26. 26.
    Hosseinzadeh M, Molahosseini A and Navi K 2008 An improved reverse converter for the moduli set {2n + 1, 2n − 1, 2n, 2n+1 − 1}. IEICE Electron. Exp. 5: 672–677CrossRefGoogle Scholar
  27. 27.
    Sousa L, Antao S and Chaves R 2013 On the design of RNS reverse converters for the four-moduli set {2n + 1, 2n − 1, 2n, 2n+1 + 1}. IEEE Trans. VLSI Syst. 21: 1945–1949CrossRefGoogle Scholar
  28. 28.
    Bakalis D, Vergos H T and Spyrou A 2011 Efficient modulo 2n ± 1 squarers. Integr. VLSI J. 44: 163–174CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  • P S Phalguna
    • 1
  • Dattaguru V Kamat
    • 1
  • P V Ananda Mohan
    • 2
    Email author
  1. 1.Department of Electronics and Communication Engineering, Manipal Institute of TechnologyManipal Academy of Higher EducationManipalIndia
  2. 2.R&D, Centre for Development of Advanced ComputingBangaloreIndia

Personalised recommendations