Skip to main content
Log in

Novel RNS-to-binary converters for the three-moduli set {2m − 1, 2m, 2m + 1}

  • Published:
Sādhanā Aims and scope Submit manuscript

Abstract

In this paper, Mixed Radix Conversion (MRC)-based Residue Number System (RNS)-to-binary converters for the three-moduli set {2m − 1, 2m, 2m + 1} are presented. The proposed reverse converters are evaluated and compared to reverse converters proposed earlier in literature using Chinese Remainder Theorem (CRT) and New CRT for this moduli set as well as two four-moduli sets {2n − 1, 2n, 2n + 1, 2n+1 − 1} and {2n − 1, 2n, 2n + 1, 2n+1 + 1} regarding hardware requirement and conversion time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Szabo N S and Tanaka R I 1967 Residue Arithmetic and Its Applications to Computer Technology. New York: Mc-Graw Hill

    MATH  Google Scholar 

  2. Ananda Mohan P V 2016 Residue Number Systems: Theory and Applications. Basel: Birkhauser

    Book  Google Scholar 

  3. Omondi A and Premkumar A B 2007 Residue Number System Theory and Implementation, vol. 2. London: Imperial College Press

    Book  Google Scholar 

  4. Soderstrand M A, Jullien G A, Jenkins W K and Taylor F (Eds.) 1986 Residue Number System Arithmetic: Modern Applications in Digital Signal Processing. Piscataway: IEEE Press

    MATH  Google Scholar 

  5. Premkumar A B 1992 An RNS to binary converter in {2n + 1, 2n, 2n − 1} moduli set. IEEE Trans. Circ. Syst. II: Analog Digit. Signal Process. 39: 480–482

    Article  Google Scholar 

  6. Premkumar A B 1995 An RNS to binary converter in a three moduli set with common factors. IEEE Trans. Circ. Syst. II: Analog Digit. Signal Process. 42: 298–301

    Article  Google Scholar 

  7. Andraros S and Ahmad H 1988 A new efficient memory-less residue to binary converter. IEEE Trans. Circ. Syst. 35: 1441–1444

    Article  Google Scholar 

  8. Piestrak S J 1995 A high-speed realization of residue to binary system conversion. IEEE Trans. Circ. Syst. II: Analog Digit. Signal Process. 42: 661–663

    Article  Google Scholar 

  9. Dhurkadas A 1998 Comments on ‘A high-speed realization of a residue to binary number system converter’. IEEE Trans. Circ. Syst. II: Analog Digit. Signal Process. 45: 446–447

    Article  Google Scholar 

  10. Bhardwaj M, Premkumar A B and Srikanthan T 1998 Breaking the 2n-bit carry propagation barrier in residue to binary conversion for the {2n − 1, 2n, 2n + 1} moduli set. IEEE Trans. Circ. Syst. I: Fund. Theor. Appl. 45: 998–1002

    Article  Google Scholar 

  11. Wang Z, Jullien G A and Miller W C 2000 An improved residue to binary converter. IEEE Trans. Circ. Syst. I: Fund. Theor. Appl. 47: 1437–1440

    MathSciNet  MATH  Google Scholar 

  12. Wang Y, Song X, Aboulhamid M and Shen H 2002 Adder based residue to binary number converters for {2n − 1, 2n, 2n + 1}. IEEE Trans. Signal Process. 50: 1772–1779

    Article  MathSciNet  Google Scholar 

  13. Hiasat A A and Abdel-Aty-Zohdy H S 1998 Residue to binary arithmetic converter for the moduli set {2k, 2k − 1, 2k–1 − 1}. IEEE Trans. Circ. Syst. II: Analog Digit. Signal Process. 45: 204–209

    Article  Google Scholar 

  14. Wang W, Swamy M N S, Ahmad M O and Wang Y 2000 A high-speed residue-to-binary converter for three moduli {2k, 2k − 1, 2k−1 − 1} RNS and a scheme for its VLSI implementation. IEEE Trans. Circ. Syst. II: Analog Digit. Signal Process. 47: 1576–1581

    Article  Google Scholar 

  15. Wang W, Swamy M N S, Ahmad M O and Wang Y 2002 A note on ‘A high-speed residue-to-binary converter for thee moduli {2k, 2k − 1, 2k−1 − 1} RNS and a scheme for its VLSI implementation. IEEE Trans. Circ. Syst. II: Analog Digit. Signal Process. 49: 230

    Article  Google Scholar 

  16. Ananda Mohan P V 2008 New residue to binary converters for the moduli set {2k, 2k − 1, 2k−1 − 1}. In: Proceedings of the IEEE Region 10 Conference (TENCON 2008), pp. 1–6

  17. Chaves R and Sousa L 2004 {2n + 1, 2n+k, 2n − 1}: a new RNS moduli set extension. In: Proceedings of the Euromicro Symposium on Digital System Design (DSD): Architectures, Methods and Tool, pp. 210–217

  18. Premkumar A B, Bhardwaj M and Srikanthan T 1998 High-speed and low-cost reverse converters for the {2n − 1, 2n, 2n + 1} moduli set. IEEE Trans. Circ. Syst. II: Analog Digit. Signal Process. 45: 903–908

    Article  Google Scholar 

  19. Wang Y, Swamy M N S and Ahmad M O 1999 Residue-to-binary number converters for three moduli sets. IEEE Trans. Circ. Syst. II: Analog Digit. Signal Process. 46: 180–183

    Article  Google Scholar 

  20. Gbolagade K A and Cotofana S D 2008 An efficient RNS to binary converter using the moduli set {2n − 1, 2n, 2n + 1}. In: Proceedings of the XXIII Conference on Design of Circuits and Integrated Systems (DCIS)

  21. Gbolagade K A, Voicu G R and Cotofana S D 2011 An efficient FPGA design of residue-to-binary converter for the moduli set {2n + 1, 2n, 2n–1}. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 19: 1500–1503

    Article  Google Scholar 

  22. Wang Y 2000 Residue to binary converters based on New Chinese Remainder theorems. IEEE Trans. Circ. Syst. II: Analog Digit. Signal Process. 47: 197–205

    Article  Google Scholar 

  23. Swartzlander Jr. E E 1980 Merged arithmetic. IEEE Trans. Comput. 29: 946–950

    Article  Google Scholar 

  24. Cao B, Srikanthan T and Chang C H 2005 Efficient reverse converters for the four-moduli sets {2n − 1, 2n, 2n + 1, 2n+1 − 1} and {2n − 1, 2n, 2n + 1, 2n−1 − 1}. IEE Proc. Comput. Digit. Tech. 152: 687–696

    Article  Google Scholar 

  25. Ananda Mohan P V and Premkumar A B 2007 RNS to binary converters for two four moduli sets {2n − 1, 2n, 2n + 1, 2n+1 − 1} and {2n − 1, 2n, 2n + 1, 2n+1 + 1}. IEEE Trans. Circ. Syst. I: Reg. Papers 54: 1245–1254

    Article  Google Scholar 

  26. Hosseinzadeh M, Molahosseini A and Navi K 2008 An improved reverse converter for the moduli set {2n + 1, 2n − 1, 2n, 2n+1 − 1}. IEICE Electron. Exp. 5: 672–677

    Article  Google Scholar 

  27. Sousa L, Antao S and Chaves R 2013 On the design of RNS reverse converters for the four-moduli set {2n + 1, 2n − 1, 2n, 2n+1 + 1}. IEEE Trans. VLSI Syst. 21: 1945–1949

    Article  Google Scholar 

  28. Bakalis D, Vergos H T and Spyrou A 2011 Efficient modulo 2n ± 1 squarers. Integr. VLSI J. 44: 163–174

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P V Ananda Mohan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phalguna, P.S., Kamat, D.V. & Mohan, P.V.A. Novel RNS-to-binary converters for the three-moduli set {2m − 1, 2m, 2m + 1}. Sādhanā 44, 99 (2019). https://doi.org/10.1007/s12046-019-1078-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12046-019-1078-0

Keywords

Navigation