Skip to main content
Log in

Non-reactive solute transport modelling with time-dependent dispersion through stratified porous media

  • Published:
Sādhanā Aims and scope Submit manuscript

Abstract

We present a numerical solution of the mobile–immobile model (MIM) with time-dependent dispersion coefficient to simulate solute transport through heterogeneous porous media. Observed experimental data of non-reactive solute transport through hydraulically coupled stratified porous media have been simulated using asymptotic and linear time-dependent dispersion functions. Non-Gaussian breakthrough curves comprising long tails are simulated well with the MIM incorporating asymptotic time-dependent dispersion model. The system is under the strong influence of physical nonequilibrium, which is evident by variable mass transfer coefficient estimated at different down-gradient distances. Asymptotic time-dependent functions are capable of capturing the rising limb of the solution phase breakthrough curves with improved accuracy, whereas tailing part simulation capabilities are similar for both asymptotic and linear time-dependent dispersion functions. Further, the temporal moment analysis demonstrated increased spreading, variance for linear dispersion model as compared with asymptotic dispersion model. It is also observed that the first-order mass transfer coefficient varies inversely with travel distance from the input source. It can be concluded from the study that MIM with time-dependent dispersion function is simpler yet sensitive to account for medium’s heterogeneity in a better manner even for small observation distances from the source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Abbreviations

C 0 :

injected concentration of solute source (M/L3)

C m :

solute concentration in the mobile region at any time t (M/L3)

C im :

solute concentration in the immobile region at any time t (M/L3)

D ( t) :

time-dependent hydrodynamic dispersion coefficient along the flow velocity (L2/T)

D 0 :

maximum dispersion coefficient (L2/T)

\( D_{m} \) :

effective diffusion coefficient (L2/T)

K A :

asymptotic time-dependent dispersion coefficient (T)

K L :

linear time-dependent dispersion coefficient (T)

M 0 :

zeroth absolute temporal moment of solute concentration

M 1 :

first absolute temporal moment of solute concentration

M 2 :

second absolute temporal moment of solute concentration

T 1(x):

first normalized temporal moment of solute concentration

T 2(x):

second central temporal moment of solute concentration

\( \theta_{m} \) :

volumetric water content of the mobile region

\( \theta_{im} \) :

volumetric water content of the immobile region

\( \theta \) :

total volumetric water content of the porous media

\( v_{m} \) :

mobile pore water velocity (L/T)

\( q \) :

flow rate (L/T)

\( \omega \) :

first-order mass transfer coefficient (T–1)

\( f \) :

fraction of adsorption sites that equilibrate instantly with the mobile regions

\( \mu_{lm} \) :

first-order decay coefficient for degradation of solute in the mobile solution phase (T–1)

\( \mu_{lim} \) :

first-order decay coefficient for degradation of solute in the immobile solution phase (T–1)

\( \mu_{sm} \) :

first-order decay coefficient for degradation of solute in the mobile region adsorbed solid phase (T–1)

\( \mu_{sim} \) :

first-order decay coefficient for degradation osolute in the immobile region adsorbed solid phase (T–1)

\( \mu_{1} \) :

first normalized temporal moment of solute concentration

\( \mu_{2 } \) :

second normalized temporal moment of solute concentration

\( K_{d} \) :

distribution coefficient of the linear sorption proc(L3/M)

\( \rho_{b} \) :

bulk density of the porous medium (M/L3)

\( x \) :

spatial coordinate taken in the direction of the fluid flow (L)

ADE:

advection–dispersion equation

ATDD:

asymptotic time-dependent dispersion function

LTDD:

linear time-dependent dispersion function

MIM:

mobile–immobile model

MIMA:

mobile–immobile model with asymptotic time-dependent dispersion function

MIML:

mobile–immobile model with linear time-dependent dispersion function

References

  1. Bear J 1972 Dynamics of fluids in porous media. New York: Elsevier

    MATH  Google Scholar 

  2. Bear J 1979 Hydraulics of groundwater. New York: McGraw-Hill International Book Co

    Google Scholar 

  3. Levy M and Berkowitz B 2003 Measurement and analysis of non-Fickian dispersion in heterogeneous porous media. J. Contam. Hydrol. 64: 203–226. https://doi.org/10.1016/s0169-7722(02)00204-8

    Article  Google Scholar 

  4. Cortis A and Berkowitz B 2004 Anomalous transport in “classical” soil and sand columns. Soil Sci. Soc. Am. J. 68: 1539–1548. https://doi.org/10.2136/sssaj2004.1539

    Article  Google Scholar 

  5. van Genuchten M T and Wierenga P J 1976 Mass transfer studies in sorbing porous media I. Analytical solutions. Soil Sci. Soc. Am. J. 40: 473–480. https://doi.org/10.2136/sssaj1976.03615995004000040011x

    Article  Google Scholar 

  6. Li L, Barry D A, Cuiligan‐Hensley P J and Bajracharya K 1994 Mass transfer in soils with local stratification of hydraulic conductivity. Water Resour. Res. 30: 2891–2900. https://doi.org/10.1029/94wr01218

    Article  Google Scholar 

  7. Gao G, Feng S, Zhan H, Huang G and Mao X 2009 Evaluation of anomalous solute transport in a large heterogeneous soil column with mobile-immobile model. J. Hydrol. Eng. 14: 966–974. https://doi.org/10.1061/(asce)he.1943-5584.0000071

    Article  Google Scholar 

  8. Gao G, Zhan H, Feng S, Fu B, Ma Y and Huang G 2010 A new mobile–immobile model for reactive solute transport with scale-dependent dispersion. Water Resour. Res. 46: 1–16. https://doi.org/10.1029/2009wr008707

    Article  Google Scholar 

  9. Sharma P K, Ojha C S P and Joshi N 2014 Finite volume model for reactive transport in fractured porous media with distance- and time-dependent dispersion. Hydrol. Sci. J. 59: 1582–1592. https://doi.org/10.1080/02626667.2014.932910

    Article  Google Scholar 

  10. Brusseau M L, Jessup R E and Rao P S C 1989 Modeling the transport of solutes influenced by multiprocess nonequilibrium. Water Resour. Res. 25: 1971–1988. https://doi.org/10.1029/wr025i009p01971

    Article  Google Scholar 

  11. Huang K, Toride N and Van Genuchten M T 1995 Experimental investigation of solute transport in large, homogeneous and heterogeneous, saturated soil columns. Transp. Porous Media 18: 283–302

    Article  Google Scholar 

  12. Kartha S A and Srivastava R 2008 Effect of slow and fast moving liquid zones on solute transport in porous media. Transp. Porous Media 75: 227–247

    Google Scholar 

  13. Swami D, Sharma P K and Ojha C S P 2013 Experimental investigation of solute transport in stratified porous media. ISH J. Hydraul. Eng. 19: 145–153. https://doi.org/10.1080/09715010.2013.793930

    Article  Google Scholar 

  14. Joshi N, Ojha C S P, Sharma P K and Madramootoo C A 2015 Application of nonequilibrium fracture matrix model in simulating reactive contaminant transport through fractured porous media. Water Resour. Res. 51: 390–408. https://doi.org/10.1002/2014wr016500

    Article  Google Scholar 

  15. Mehmani Y and Balhoff M T 2015 Mesoscale and hybrid models of fluid flow and solute transport. Rev. Mineral. Geochem. 80: 433–459

    Article  Google Scholar 

  16. Nielsen D R, Th. Van Genuchten M and Biggar J W 1986 Water flow and solute transport processes in the unsaturated zone. Water Resour. Res. 22: 89S–108S, https://doi.org/10.1029/wr022i09sp0089s

    Article  Google Scholar 

  17. Gelhar L W, Welty C and Rehfeldt K R 1992 A critical review of data on field-scale dispersion in aquifers. Water Resour. Res. 28: 1955–1974. https://doi.org/10.1029/92wr00607

    Article  Google Scholar 

  18. Dagan G 1988 Time-dependent macrodispersion for solute transport in anisotropic heterogeneous aquifers. Water Resour. Res. 24: 1491–1500

    Article  Google Scholar 

  19. Zhou L and Selim H M 2003 Scale-dependent dispersion in soils: an overview. Adv. Agron. 80: 223–263

    Article  Google Scholar 

  20. Pickens J F and Grisak G E 1981 Scale-dependent dispersion in a stratified granular aquifer. Water Resour. Res. 17: 1191–1211

    Article  Google Scholar 

  21. Zhou L and Selim H M 2003 Application of the fractional advection–dispersion equation in porous media. Soil Sci. Soc. Am. J. 67: 1079–84. https://doi.org/10.2136/sssaj2003.1079

    Article  Google Scholar 

  22. Schulze-Makuch D 2005 Longitudinal dispersivity data and implications for scaling behavior. Ground Water 43: 443–456. https://doi.org/10.1111/j.1745-6584.2005.0051.x

    Article  Google Scholar 

  23. Kumar G S, Sekhar M and Misra D 2008 Time-dependent dispersivity of linearly sorbing solutes in a single fracture with matrix diffusion. J. Hydrol. Eng. 13: 250–257, https://doi.org/10.1061/(asce)1084-0699(2008)13:4(250)

    Article  Google Scholar 

  24. Swami D, Sharma P K and Ojha C S P 2014 Simulation of experimental breakthrough curves using multiprocess non-equilibrium model for reactive solute transport in stratified porous media. Sadhana Acad. Proc. Eng. Sci. 39: 1425–1446. https://doi.org/10.1007/s12046-014-0287-9

    Article  MathSciNet  MATH  Google Scholar 

  25. Jaiswal D K, Kumar A, Kumar N and Yadav R R 2009 Analytical solutions for temporally and spatially dependent solute dispersion of pulse type input concentration in one-dimensional semi-infinite media. J. Hydro-Environ. Res. 2: 254–263. http://dx.doi.org/10.1016/j.jher.2009.01.003

    Article  Google Scholar 

  26. Sharma P K and Srivastava R 2012 Concentration profiles and spatial moments for reactive transport through porous media. J. Hazard. Toxic Radioact. Waste 16: 125–133. https://doi.org/10.1061/(asce)hz.2153-5515.0000112

    Article  Google Scholar 

  27. Selim H 2014 Transport & fate of chemicals in soils: principles & applications. CRC Press, Boca Raton

    Book  Google Scholar 

  28. Guérin T and Dean D S 2017 Universal time-dependent dispersion properties for diffusion in a one-dimensional critically tilted potential. Phys. Rev. E 95: 12109

    Article  Google Scholar 

  29. Gelhar L W, Gutjahr A L and Naff R L 1979 Stochastic analysis of macrodispersion in a stratified aquifer. Water Resour. Res. 15: 1387–1397

    Article  Google Scholar 

  30. Pickens F and Grisak E 1981 Modelling of scale-dependent dispersion in hydrogeologic systems. Water Resour. Res. 17: 1701–1711

    Article  Google Scholar 

  31. Sudicky E A 1986 A natural gradient experiment on solute transport in a sand aquifer: spatial variability of hydraulic conductivity and its role in the dispersion process. Water Resour. Res. 22: 2069–2082

    Article  Google Scholar 

  32. Arya A, Hewett T A, Larson R G and Lake L W 1988 Dispersion and reservoir heterogeneity. SPE Reserv. Eng. 3: 139–148. https://doi.org/10.2118/14364-pa

    Article  Google Scholar 

  33. Wheatcraft S W and Tyler S W 1988 An explanation of scale-dependent dispersivity in heterogeneous aquifers using concepts of fractal geometry. Water Resour. Res. 24: 566–578. https://doi.org/10.1029/wr024i004p00566

    Article  Google Scholar 

  34. Logan J D 1996 Solute transport in porous media with scale-dependent dispersion and periodic boundary conditions. J. Hydrol. 184: 261–276. https://doi.org/10.1016/0022-1694(95)02976-1

    Article  Google Scholar 

  35. Swami D, Sharma A, Sharma P K and Shukla D P 2016 Predicting suitability of different scale-dependent dispersivities for reactive solute transport through stratified porous media. J. Rock Mech. Geotech. Eng. 8: 921–927. https://doi.org/10.1016/j.jrmge.2016.07.005

    Article  Google Scholar 

  36. Natarajan N 2016 Effect of distance-dependent and time-dependent dispersion on non-linearly sorbed multispecies contaminants in porous media. ISH J. Hydraul. Eng. 22: 16–29

    Article  Google Scholar 

  37. Barry D A and Sposito G 1989 Analytical solution of a convection–dispersion model with time-dependent transport coefficients. Water Resour. Res. 25: 2407–2416

    Article  Google Scholar 

  38. Zou S, Xia J and Koussis A D 1996 Analytical solutions to non-Fickian subsurface dispersion in uniform groundwater flow. J. Hydrol. 179: 237–258. https://doi.org/10.1016/0022-1694(95)02830-7

    Article  Google Scholar 

  39. Sander G C and Braddock R D 2005 Analytical solutions to the transient, unsaturated transport of water and contaminants through horizontal porous media. Adv. Water Resour. 28: 1102–1111. https://doi.org/10.1016/j.advwatres.2004.10.010

    Article  Google Scholar 

  40. Kumar G S, Sekhar M and Misra D 2006 Time dependent dispersivity behavior of non-reactive solutes in a system of parallel fractures. Hydrol. Earth Syst. Sci. Discuss. 3: 895–923. https://doi.org/10.5194/hessd-3-895-2006

    Article  Google Scholar 

  41. Basha H A and El-Habel F S 1993 Analytical solution of the one-dimensional time-dependent transport equation. Water Resour. Res. 29: 3209–3214, https://doi.org/10.1029/93wr01038

    Article  Google Scholar 

  42. Yates S R 1990 An analytical solution for one-dimensional transport in heterogeneous porous media. Water Resour. Res. 26: 2331–2338

    Article  Google Scholar 

  43. Yates S R 1992 An analytical solution for one-dimensional transport in porous media with an exponential dispersion function. Water Resour. Res. 28: 2149–2154

    Article  Google Scholar 

  44. Swami D, Sharma P K and Ojha C S P 2016 Behavioral study of the mass transfer coefficient of nonreactive solute with velocity, distance, and dispersion. J. Environ. Eng. 143: 1–10. https://doi.org/10.1061/(asce)ee.1943-7870.0001164

    Article  Google Scholar 

  45. van Genuchten M T and Wierenga P J 1977 Mass transfer studies in sorbing porous media: II. Experimental evaluation with tritium. Soil Sci. Soc. Am. J. 41: 272–278

    Article  Google Scholar 

  46. Yu C, Warrick A W and Conklin M H 1999 A moment method for analyzing breakthrough curves of step inputs. Water Resour. Res. 35: 3567–3572. https://doi.org/10.1029/1999wr900225

    Article  Google Scholar 

  47. Pang L, Goltz M and Close M 2003 Application of the method of temporal moments to interpret solute transport with sorption and degradation. J. Contam. Hydrol. 60: 123–134. https://doi.org/10.1016/s0169-7722(02)00061-x

    Article  Google Scholar 

  48. Bardsley W E 2003 Temporal moments of a tracer pulse in a perfectly parallel flow system. Adv. Water Resour. 26: 599–607. https://doi.org/10.1016/s0309-1708(03)00047-2

    Article  Google Scholar 

  49. Renu V and Kumar G S 2016 Temporal moment analysis of multi-species radionuclide transport in a coupled fracture–skin–matrix system with a variable fracture aperture. Environ. Model. Assess. 21(4): 547–562. https://doi.org/10.1007/s10666-016-9515-5

    Article  Google Scholar 

  50. Srivastava R and Brusseau M L 1996 Nonideal transport of reactive solutes in heterogeneous porous media: 1. Numerical model development and moments analysis. J. Contam. Hydrol. 24: 117–143. https://doi.org/10.1016/s0169-7722(96)00039-3

    Article  Google Scholar 

  51. Srivastava R, Sharma P K and Brusseau M L 2004 Reactive solute transport in macroscopically homogeneous porous media: analytical solutions for the temporal moments. J. Contam. Hydrol. 69: 27–43. https://doi.org/10.1016/s0169-7722(03)00155-4

    Article  Google Scholar 

  52. Sharma P K, Sekhar M, Srivastava R and Ojha C S P 2012 Temporal moments for reactive transport through fractured impermeable/permeable formations. J. Hydrol. Eng. 17: 1302–1314. https://doi.org/10.1061/(asce)he.1943-5584.0000586

    Article  Google Scholar 

  53. Govindaraju R S and Das B S 2007 Moment analysis for subsurface hydrologic applications. Springer Netherlands, Dordrecht

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ABHAY GULERIA.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

GULERIA, A., SWAMI, D., SHARMA, A. et al. Non-reactive solute transport modelling with time-dependent dispersion through stratified porous media. Sādhanā 44, 81 (2019). https://doi.org/10.1007/s12046-019-1056-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12046-019-1056-6

Keywords

Navigation