Skip to main content
Log in

An efficient and novel FDTD method based performance investigation in high-speed current-mode signaling SWCNT bundle interconnect

  • Published:
Sādhanā Aims and scope Submit manuscript

Abstract

Carbon nanotube (CNT) has emerged as the most extensively researched area in nanoscience and amongst the frontrunners in co-triggering the nanotechnology revolution. Single-wall CNT (SWCNT) bundle is a part of CNT family and has been proposed as the future nano-wires in integrated circuits. The present paper analyzes the performance of SWCNT bundle interconnect with high-speed current-mode signaling (CMS) scheme using efficient finite-difference time-domain (FDTD) method. For the first time, FDTD based method is explored for modeling CMS SWCNT bundle interconnect incorporating practical CMOS driver gate. The CMOS gate is characterized by nth power-law model. The stability of FDTD method is ascertained by Courant condition. The proposed FDTD based method is efficient and can be used for performance analyses of future nano-wire SWCNT bundle as well as conventional copper interconnects. At the same time, this method is applicable for both traditional full-voltage swing voltage-mode signaling (VMS) and remarkable low-voltage swing CMS schemes. The various analyses in the paper reveal that CMS SWCNT bundle interconnect has higher edge over CMS copper interconnect in terms of smaller delay, lesser crosstalk induced delay and noise. The proposed analytical FDTD based method is validated using Tanner-SPICE EDA simulation tool. The maximum error between the FDTD and SPICE for the transient response in CMS SWCNT bundle interconnect for 32 nm technology node is within 3%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Abbreviations

t :

infinitesimal small time step

z :

infinitesimal small distance

C c :

coupling capacitance per unit length

C d :

drain diffusion capacitance

C dis :

distributed capacitance

C e :

electrostatic capacitance per unit length

C L :

load capacitance

C m :

gate-drain coupling capacitance

C q :

quantum capacitance per unit length

d :

diameter of monolayer SWCNT

e :

charge on electron

h :

Planck’s constant

h g :

height above ground plane

I :

current

i, j :

positive integer values

int :

integer value

l :

length of interconnect

L dis :

distributed inductance

L k :

kinetic inductance per unit length

L m :

magnetic inductance per unit length

M :

mutual inductance

N :

total number of SWCNTs in a bundle

N t :

number of SWCNTs along the thickness of SWCNT bundle interconnect

N w :

number of SWCNTs along the width of SWCNT bundle interconnect

Pm :

metallic ratio

Rc :

contact resistance

R dis :

distributed resistance

R L :

load resistance

R lump :

lumped resistance

Rq :

quantum resistance

s :

distance between two parallel SWCNT bundle interconnect

t :

thickness of SWCNT bundle interconnect

T :

room temperature

t :

time

V :

voltage

v f :

Fermi velocity

w :

width of SWCNT bundle interconnect

x :

inter-SWCNT distance

y :

center-to-center distance between SWCNTs facing each other in a two parallel SWCNT bundle interconnects

z :

position

α :

parameter for determining interconnect material

β :

parameter for determining signaling scheme

λ :

mean free path

References

  1. Wong H P and Akinwande D 2011 Carbon nanotube and graphene device physics. Cambridge: Cambridge University Press

    Google Scholar 

  2. Chiariello A G, Miano G, Maffucci, A, Villone F and Zamboni W 2007 Electromagnetic models for metallic carbon nanotube interconnects. Microelectron. Int. Emerald 26(3): 571–585

    MathSciNet  MATH  Google Scholar 

  3. Cao Q and Rogers J A 2009 Ultrathin films of single-walled carbon nano-materials for electronics and sensors: A review of fundamental and applied aspects. Adv. Mater. 21(1): 29–53

    Article  Google Scholar 

  4. Jorio A, Dresselhaus G and Dresselhaus M S 2008, Carbon nanotubes advanced topics in the synthesis, structure, properties and applications. Berlin: Springer

    MATH  Google Scholar 

  5. Misewich J A, Martel R, Avouris P, Tsang J C, Heinze S and Tersoff J 2003 Electrically induced optical emission from a carbon nanotube FET. Science 300(5620): 783–786

    Article  Google Scholar 

  6. Son Y W, Cohen M L and Louie S G 2006 Half metallic graphene nanoribbons. Nature 444(7117): 347–350

    Article  Google Scholar 

  7. Wang N, Tang Z K, Li G D and Chen J S 2000 Materials science: Single-walled 4 Ǻ carbon nanotube arrays. Nature 408(6808): 50–51

    Article  Google Scholar 

  8. Yu M F, Lourie O, Dyer M J, Moloni K, Kelly T F and Ruoff R S 2000 Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287(5453): 637–640

    Article  Google Scholar 

  9. Lu F, Gu L, Meziani M J, Wang X, Luo P G, Veca L M, Cao L and Sun Y P 2009 Advances in bioapplications of carbon nanotubes. Adv. Mater. 21(2): 139–152

    Article  Google Scholar 

  10. Rai M K, Khanna R and Sarkar S 2014 Crosstalk analysis in CNT bundle interconnects for VLSI applications. IEE J. Trans. Elect. Electron. Eng. 9(4): 391–397

    Article  Google Scholar 

  11. McEuen P L, Fuhrer M S and Park H K 2002 Single-walled carbon nanotube electronics. IEEE Trans. Nanotechnol. 1(1): 78–85

    Article  Google Scholar 

  12. Javey A 2003 Ballistic carbon nanotube field-effect transistors. Nature 424(6949): 654–657

    Article  Google Scholar 

  13. Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2015 Electric field effect in atomically thin carbon films. Science 306(5696): 666–669

    Article  Google Scholar 

  14. Tiang M and Mao J 2015 Modeling and fast simulation of multiwalled carbon nanotube interconnects. IEEE Trans. Electromag. Compat. 57(2): 232–240

    Article  Google Scholar 

  15. Rao P S, Anandatheertha S, Naik G N and Gopalakrishnan 2015 Estimation of mechanical properties of single wall carbon nanotubes using molecular mechanics approach. Sadhana 40(4): 1301–1311

    Article  MathSciNet  Google Scholar 

  16. Kuruvilla N and Raina J P 2014 Impact of bundle structure on performance of on-chip CNT interconnects. J. Nanotechnol. 2014: 1–8

    Article  Google Scholar 

  17. Liang F, Wang G and Lin H 2012 Modeling of crosstalk effects in multiwall carbon nanotube interconnects. IEEE Trans. Electromagn. Compat. 54(1): 133–139

    Article  Google Scholar 

  18. Maffucci A, Miano G and Villone F 2008 Performance comparison between metallic carbon nanotube and copper nano-interconnects. IEEE Trans. Adv. Packag. 31(4): 692–699

    Article  Google Scholar 

  19. Naeemi A, Sarvari R and Meindl J D 2005 Performance comparison between carbon nanotube and copper interconnects for gigascale integration (GSI). IEEE Electron Device Lett. 26(2): 84–86

    Article  Google Scholar 

  20. Li H and Banerjee K 2009 High-frequency analysis of carbon nanotube interconnects and implications for on-chip inductor design. IEEE Trans. Electron Devices 56(10): 2202–2214

    Article  Google Scholar 

  21. Sahoo M., Ghosal P and Rahaman H 2014 Performance modeling and analysis of carbon nanotube bundles for future VLSI circuit applications. J. Comput. Electron. 13(3): 673–688

    Article  Google Scholar 

  22. Naeemi A and Meindl J D 2007 Design and performance modeling for single-walled carbon nanotubes as local, semiglobal, and global interconnects in gigascale integrated systems. IEEE Trans. Electron Devices 54(1): 26–37

    Article  Google Scholar 

  23. Zhang K, Tian B, Wang F and Wei J 2012 Crosstalk analysis of carbon nanotube bundle interconnect. Nanoscale Res. Lett. 7(1): 1–5

    Article  Google Scholar 

  24. Pu S N, Lin W Y, Mao J F and Liu Q H 2009 Crosstalk prediction of single- and double-walled carbon-nanotube (SWCNT/DWCNT) bundle interconnects. IEEE Trans. Electron Devices 54(4): 560–568

    Article  Google Scholar 

  25. Das D and Rahaman H 2011 Analysis of crosstalk in single- and multiwall carbon nanotube interconnects and its impact on gate oxide reliability. IEEE Trans. Nanotechnol. 10(6): 1362–1370

    Article  Google Scholar 

  26. Sathyakam P U and Mallick P S 2012 Towards realization of mixed carbon nanotube bundles as VLSI interconnects: A review. Nano Commun. Netw. 3(3): 175–182

    Article  Google Scholar 

  27. Duksh Y S, Kaushik B K and Agarwal R P 2015 FDTD technique based crosstalk analysis of bundled SWCNT interconnects. J. Semicond. 36(5): 055002–055009

    Article  Google Scholar 

  28. Agrawal Y, Chandel R and Dhiman R 2015 High performance current mode receiver design for on-chip VLSI interconnects. Springer In: Proceedings of the international conference on ICA series: Advances in intelligent systems and computing Chapter 54(343): 527–536

  29. Yuan F 2007 CMOS Current mode circuits for data communication. New York: Springer

    Google Scholar 

  30. Chandel R, Sarkar S and Agarwal R P 2005 Transition time considerations in repeater-chains. Microelectron. Int. Emerald 22(3): 39–40

    Article  Google Scholar 

  31. Tuuna S, Nigussie E, Isoaho J and Tenhunen H 2012 Modeling of energy dissipation in RLC current-mode signaling. IEEE Trans. Very Large Scale Integr. Syst. 20(6): 1146–1151

    Article  Google Scholar 

  32. Dave M, Jain M, Baghini M S and Sharma D 2013 A variation tolerant current mode signaling scheme for on-chip interconnects. IEEE Trans. Very Large Scale Integr. Syst. 21(2): 342–353

    Article  Google Scholar 

  33. Bashirullah R, Liu W and Cavin R K 2003 Current-mode signaling in deep submicrometer global interconnects. IEEE Trans. Very Large Scale Integr. Syst. 11(3): 406–417

    Article  Google Scholar 

  34. Agrawal Y and Chandel R 2015 Crosstalk analysis of current-mode signalling-coupled RLC interconnects using FDTD technique. IETE Tech. Rev. 33(2): 1–12

    Google Scholar 

  35. Amore M D, Sarto M S and Tamburrano A 2010 Fast transient analysis of next-generation interconnects based on carbon nanotubes. IEEE Trans. Electromagn. Compat. 52(2): 496–503

    Article  Google Scholar 

  36. Cui J P, Zhao W S, Yin W Y and Hu J 2012 Signal transmission analysis of multilayer graphene nano-ribbon (MLGNR) interconnects. IEEE Trans. Electromagn. Compat. 54(1): 126–132

    Article  Google Scholar 

  37. Chiariello A G, Forestiere C, Miano G and Maffucci A 2013 Scattering properties of carbon nanotubes. Microelectron. Int. Emerald 32(6): 1793–1808

    Google Scholar 

  38. Majumder M K, Kaushik B K and Manhas S K 2014 Analysis of delay and dynamic crosstalk in bundled carbon nanotube interconnects. IEEE Trans. Electromagn. Compat. 56(6): 1666–1673

    Article  Google Scholar 

  39. Fathi D and Forouzandeh B 2009 Time domain analysis of carbon nanotube interconnects based in distributed RLC model. NANO 4(1): 13–21

    Article  Google Scholar 

  40. Predictive Technology Models 2015 available at: http://ptm.asu.edu

  41. Wong S C, Lee G Y and Ma D J 2000 Modeling of interconnect capacitance, delay and crosstalk in VLSI. IEEE Trans. Semicond. Manuf. 13(1): 108–111

    Article  Google Scholar 

  42. Paul C R 1994 Incorporation of terminal constraints in the FDTD analysis of transmission lines. IEEE Trans. Electromagn. Compat. 36(2): 85–91

    Article  Google Scholar 

  43. Sakurai T and Newton A R 1991 A simple MOSFET model for circuit analysis. IEEE Trans. Electron Devices 38(4): 887–894

    Article  Google Scholar 

  44. Tanner EDA tools for SPICE simulation 2015 available at: http://www.tannereda.com

  45. International Technology Roadmap for Semiconductors (ITRS) 2009 available at: http://public.itrs.net

  46. Jiang I, Chang Y W and Jou Y Y 2002 Crosstalk driven interconnect optimization by simultaneous gate and wire sizing. IEEE Trans. Comput. Aided Des. 19(9): 999–1010

    Article  Google Scholar 

  47. Agrawal Y, Chandel R and Dhiman R 2017 Variability analysis of stochastic parameters on the electrical performance of on-chip current-mode interconnect system. IETE J. Res. 63(2): 262–280

    Article  Google Scholar 

  48. Alam N, Kureshi A K, Hasan M and Arslan T 2009 Performance comparison and variability analysis of CNT bundle and copper interconnects. In: IEEE international conference on multimedia, signal processing and communication technologies 169–172

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yash Agrawal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agrawal, Y., Girish, M. & Chandel, R. An efficient and novel FDTD method based performance investigation in high-speed current-mode signaling SWCNT bundle interconnect. Sādhanā 43, 175 (2018). https://doi.org/10.1007/s12046-018-0957-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12046-018-0957-0

Keywords

Navigation