Skip to main content

Advertisement

Log in

Design, analysis and application of high set-up ZVT DC–DC converter with direct power transfer

  • Published:
Sādhanā Aims and scope Submit manuscript

Abstract

In this paper, a new snubber cell for soft switched high set-up DC–DC converters is introduced. The main switch is turned on by zero-voltage transition and turned off by zero-voltage switching (ZVS). The main diode is turned on by ZVS and turned off by zero-current switching. Besides, all auxiliary semiconductor devices are soft switched. Any semiconductor device does not expose the additional current or voltage stress. The new snubber transfers some of the circulation energy to the output side when it ensures soft switching for main semiconductor devices. Thus, the current stress of auxiliary switch is significantly reduced. Besides, the total efficiency of converter is high due to the direct power transfer feature of new converter. A theoretical and mathematical analysis of the new converter is presented, and also verified with experimental set-up at 500 W and 100 kHz. Finally, the overall efficiency of new converter is 97.4% at nominal output power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Zhu B, Ren L, Wu X and Song K 2017 ZVT high step-up DC–DC converter with a novel passive snubber cell. IET Power Electron. 10(5): 599–605

    Article  Google Scholar 

  2. Zhang X, Qian W and Li Z 2017 Design and analysis of a novel ZVZCT boost converter with coupling effect. IEEE Trans. Power Electron. 32(12): 5992–9000

    Google Scholar 

  3. Yi J H, Choi W and Cho B H 2017 Zero-voltage-transition interleaved boost converter with an auxiliary coupled inductor. IEEE Trans. Power Electron. 32(8): 5917–5930

    Article  Google Scholar 

  4. Ting N S 2018 A new high power factor ZVT–ZCT AC–DC boost converter. J. Electr. Eng. Technol. 13(4): 1538–1547

    Google Scholar 

  5. Akhlaghi B, Molavi N, Fekri M and Farzanehfard H 2018 High step-up interleaved ZVT converter with low voltage stress and automatic current sharing. IEEE Trans. Ind. Electron. 65(1): 291–299

    Article  Google Scholar 

  6. Mohammadi M R and Farzanehfard H 2017 Family of soft-switching bidirectional converters with extended ZVS range. IEEE Trans. Ind. Electron. 64(9): 7000–7008

    Article  Google Scholar 

  7. Ting N S, Aksoy I and Sahin Y 2017 ZVT-PWM DC–DC boost converter with active snubber cell. IET Power Electron. 10(2): 251–260

    Article  Google Scholar 

  8. Sahin Y 2018 A novel soft switching PWM-PFC AC–DC boost converter. J. Electr. Eng. Technol. 13(1): 256–262

    Google Scholar 

  9. Ting N S, Sahin Y and Aksoy I 2017 Analysis, design, and implementation of a zero-voltage-transition interleaved boost converter. J. Power Electron. 17(1): 41–55

    Article  Google Scholar 

  10. Sahin Y, Ting N S and Aksoy I 2018 A highly efficient ZVT–ZCT PWM boost converter with direct power transfer. Electr. Eng. 100(2): 1113–1123

    Article  Google Scholar 

  11. Sahin Y and Ting N S 2018 Soft switching passive snubber cell for family of PWM DC–DC converters. Electr. Eng. 100(3): 1785–1796

    Article  Google Scholar 

  12. Sahin Y, Ting N S and Acar F 2018 A soft switching with reduced voltage stress ZVT-PWM full-bridge converter. Rev. Sci. Instrum. 89(1): 1–9

    Google Scholar 

  13. Hua G, Leu C S, Jiang Y and Lee F C Y 1994 New zero-voltage transition PWM converters. IEEE Trans. Power Electron. 9(2): 213–219

    Article  Google Scholar 

  14. Tarzamni T, Babaei E, Gharehkoushan A Z and Sabahi M 2017 Interleaved full ZVZCS DC–DC boost converter: analysis, design, reliability evaluations and experimental results. IET Power Electron. 10(7): 835–845

    Article  Google Scholar 

  15. Das P and Moschopoulos G 2007 A comparative study of zero-current transition PWM converters. IEEE Trans. Ind. Electron. 54(3): 1319–1328

    Article  Google Scholar 

  16. Adib E and Farzanehfard H 2012 Analysis and design of a zero-current switching forward converter with simple auxiliary circuit. IEEE Trans. Power Electron. 27(1): 144–150

    Article  Google Scholar 

  17. Xi Y and Jain P 2003 A forward converter topology employing a resonant auxiliary circuit to achieve soft switching and power transformer resetting. IEEE Trans. Ind. Electron. 50(1): 132–140

    Article  Google Scholar 

  18. Chao K H and Yang M S 2014 High step-up interleaved converter with soft-switching using a single auxiliary switch for a fuel cell system. IET Power Electron. 7(11): 2704–2716

    Article  Google Scholar 

  19. Chen Y T, Shiu S M and Liang R H 2012 Analysis and design of a zero-voltage-switching and zero-current-switching interleaved boost converter. IEEE Trans. Power Electron. 27: 161–173

    Article  Google Scholar 

  20. Adib E and Farzanehfard H 2008 Family of zero-current transition PWM converters. IEEE Trans. Ind. Electron. 55: 3055–3063

    Article  Google Scholar 

  21. Rezvanyvardom M, Adib E, Farzanehfard H and Mohammadi M 2012 Analysis, design and implementation of zero-current transition interleaved boost converter. IET Power Electron. 5: 1804–1812

    Article  Google Scholar 

  22. Lee D Y, Lee M K, Hyun D S and Choy I 2003 New zero-current-transition PWM DC/DC converters without current stress. IEEE Trans. Power Electron. 18: 95–104

    Article  Google Scholar 

  23. Fuentes R C and Hey H L 1999 An improved ZCS-PWM commutation cell for IGBT’s application. IEEE Trans. Power Electron. 14: 939–948

    Article  Google Scholar 

  24. Canesin C A and Barbi I 1997 Novel zero-current-switching PWM converters. IEEE Trans. Ind. Electron. 44: 372–381

    Article  Google Scholar 

  25. Wang C M 2005 A new family of zero-current-switching (ZCS) PWM converters. IEEE Trans. Ind. Electron. 52: 1117–1125

    Article  Google Scholar 

  26. Li Z, Zhang X, Qian W and Bai H 2016 A novel zero-current-transition PWM DC–DC converter with coupled inductor. In: Proceedings of the IEEE 7th International Symposium on Power Electronics for Distributed Generation Systems Conference, Vancouver, Canada, pp. 1–4

  27. Urgun S 2011 Zero-voltage transition zero-current transition pulsewidth modulation DC–DC buck converter with zero-voltage switching zero-current switching auxiliary circuit. IET Power Electron. 5: 627–634

    Article  Google Scholar 

  28. Rezvanyvardom M, Adib E and Farzenahfard H 2011 New interleaved zero-current switching pulse-width modulation boost converter with one auxiliary switch. IET Power Electron. 4(9): 979–983

    Article  Google Scholar 

  29. Rezvanyvardom M, Adib E, Farzenahfard H and Mohammadi M 2012 Analysis, design and implementation of zero-current transition interleaved boost converter. IET Power Electron. 5(9): 1804–1812

    Article  Google Scholar 

  30. Wai R J and Duan R Y 2005 High step-up converter with coupled-inductor. IEEE Trans. Power Electron. 20(5): 1025–1035

    Article  Google Scholar 

  31. Wang C M, Lin C H, Lu C M and Li J C 2017 Analysis, design, and realisation of a ZVT interleaved boost dc/dc converter with single ZVT auxiliary circuit. IET Power Electron. 10: 1–11

    Article  Google Scholar 

  32. Lee J H 2013 Auxiliary switch control of a bidirectional soft-switching DC/DC converter. IEEE Trans. Power Electron. 28(12): 5446–5457

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yakup Sahin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahin, Y., Ting, N.S. Design, analysis and application of high set-up ZVT DC–DC converter with direct power transfer. Sādhanā 43, 169 (2018). https://doi.org/10.1007/s12046-018-0938-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12046-018-0938-3

Keywords

Navigation