Skip to main content
Log in

Microstructural properties of lithium-added cement mortars subjected to alkali–silica reactions

  • Published:
Sādhanā Aims and scope Submit manuscript

Abstract

Little comparative research has been done on the efficiency of lithium additives to reduce the alkali–silica reaction (ASR) expansion. To reduce the ASR effects of reactive aggregate, different mortar bars were obtained by adding lithium additives (Li2SO4, LiNO3, Li2CO3, LiBr and LiF) to the mixing water by the following mass percentages of cement: 0%, 0.5%, 1%, 1.5%, 2%, 2.5% and 3%. The ASR expansions of the mortar bars at 2, 7 and 14 days were identified according to ASTM C 1260-14. The morphology of the specimens subject to the ASR effect was analysed using a scanning electron microscope, and their chemical composition was analysed by electron dispersion spectroscopy. Among all specimens, the lowest level of 14-day ASR expansion was obtained in mortar bars with 3% Li2CO3 additive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Abbreviations

ASR:

alkali–silica reaction

EDS:

electron dispersion spectroscopy

Li2CO3 :

lithium carbonate

Li2SO4 :

lithium sulphate

LiBr:

lithium bromide

LiF:

lithium fluoride

LiNO3 :

lithium nitrate

LiOH:

lithium hydroxide

Na2Oeq :

alkali equivalent

NaOH:

sodium hydroxide

SEM:

scanning electron microscopy

XRD:

X-ray diffraction

XRF:

X-ray fluorescence spectrometry

References

  1. Demir İ and Arslan M 2013 The mechanical and microstructural properties of Li2SO4, LiNO3, Li2CO3 and LiBr added mortars exposed to alkali–silica reaction. Constr. Build. Mater. 42: 64–77

    Article  Google Scholar 

  2. Demir İ and Sevim Ö 2017 Effect of sulfate on cement mortars containing Li2SO4, LiNO3, Li2CO3 and LiBr. Constr. Build. Mater. 156: 46–55

    Article  Google Scholar 

  3. Stanton T E 2008 Expansion of concrete through reaction between cement and aggregate. MI: Farmington Hills

    Google Scholar 

  4. Frohnsdorff G, Clifton J R and Brown P W 1978 History and status of standards relating to alkalies in hydraulic cements. In: Cement Standards-Evolution and Trends. West Conshohocken, PA: ASTM International

  5. Hobbs D W 1988 Alkali–silica reaction in concrete. Michigan: Thomas Telford Publishing

    Book  Google Scholar 

  6. Diamond S and Penko M 1992 Alkali–silica reaction processes: the conversion of cement alkalies to alkali hydroxide. In: Proceedings of the Symposium on Durability of Concrete ACI SP-131, American Concrete Institute, vol. 131, pp. 153–168

  7. Helmuth R, Stark D, Diamond S and Moranville-Regourd M 1993 Alkali–silica reactivity: an overview of research. Washington, DC: National Research Council

    Google Scholar 

  8. Capra B and Bournazel J P 1995 Perspectives nouvelles pour la prise en compte des alcali-réactions dans le calcul des structures. Mater. Struct. 28(2): 71–73

    Article  Google Scholar 

  9. Taylor G D 2014 Materials in construction: an ıntroduction. UK: Taylor & Francis

    Google Scholar 

  10. Ineson P R 1990 Siliceous components in aggregates. Cem. Concr. Compos. 12(3): 185–190

    Article  Google Scholar 

  11. Wen H X 1998 Alkali-aggregate reaction in concrete. Lecture Notes. Hong Kong: Civil Engineering Department, Hong Kong University, pp. 1–55

  12. Bagel L 1998 Strength and pore structure of ternary blended cement mortars containing blast furnace slag and silica fume. Cem. Concr. Res. 28(7): 1011–1022

    Article  Google Scholar 

  13. Dongxue L, Xinhua F, Xuequan W and Mingshu T 1997 Durability study of steel slag cement. Cem. Concr. Res. 27(7): 983–987

    Article  Google Scholar 

  14. Monteiro P J M, Wang K, Sposito G, Dos Santos M C and de Andrade W P 1997 Influence of mineral admixtures on the alkali–aggregate reaction. Cem. Concr. Res. 27(12): 1899–1909

    Article  Google Scholar 

  15. Ramlochan T, Thomas M and Gruber K A 2000 The effect of metakaolin on alkali–silica reaction in concrete. Cem. Concr. Res. 30(3): 339–344

    Article  Google Scholar 

  16. Malvar L J, Cline G D, Burke D F, Rollings R, Sherman T W and Greene J L 2002 Alkali–silica reaction mitigation: state of the art and recommendations. ACI Mater. J. 99(5): 480–489

    Google Scholar 

  17. Mazarei V, Trejo D, Ideker J H and Isgor O B 2017 Synergistic effects of ASR and fly ash on the corrosion characteristics of RC systems. Constr. Build. Mater. 153: 647–655

    Article  Google Scholar 

  18. Souza L M, Polder R B and Çopuroğlu O 2017 Lithium migration in a two-chamber set-up as treatment against expansion due to alkali–silica reaction. Constr. Build. Mater. 134: 324–335

    Article  Google Scholar 

  19. Leemann A, Bernard L, Alahrache S and Winnefeld F 2015 ASR prevention-effect of aluminum and lithium ions on the reaction products. Cem. Concr. Res. 76: 192–201

    Article  Google Scholar 

  20. Ekolu S, Rakgosi G and Hooton D 2017 Long-term mitigating effect of lithium nitrate on delayed ettringite formation and ASR in concrete—microscopic analysis. Mater. Charact. 133: 165–175

    Article  Google Scholar 

  21. Islam M S and Ghafoori N 2016 Experimental study and empirical modeling of lithium nitrate for alkali–silica reactivity. Constr. Build. Mater. 121: 717–726

    Article  Google Scholar 

  22. Aquino W, Lange D A and Olek J 2001 The influence of metakaolin and silica fume on the chemistry of alkali–silica reaction products. Cem. Concr. Compos. 23(6): 485–493

    Article  Google Scholar 

  23. Juenger M C G and Ostertag C P 2004 Alkali–silica reactivity of large silica fume-derived particles. Cem. Concr. Res. 34(8): 1389–1402

    Article  Google Scholar 

  24. Ueda T, Baba Y and Nanasawa A 2013 Penetration of lithium into ASR-affected concrete due to electro-osmosis of lithium carbonate solution. Constr. Build. Mater. 39: 113–118

    Article  Google Scholar 

  25. Feng X, Thomas M D A, Bremner T W, Folliard K J and Fournier B 2010 New observations on the mechanism of lithium nitrate against alkali silica reaction (ASR). Cem. Concr. Res. 40(1): 94–101

    Article  Google Scholar 

  26. Kim T and Olek J 2016 The effects of lithium ions on chemical sequence of alkali–silica reaction. Cem. Concr. Res. 79: 159–168

    Article  Google Scholar 

  27. Leemann A, Lörtscher L, Bernard L, Le Saout G, Lothenbach B and Espinosa-Marzal R M 2014 Mitigation of ASR by the use of LiNO3-characterization of the reaction products. Cem. Concr. Res. 59: 73–86

    Article  Google Scholar 

  28. Stark D, Morgan B and Okamoto P 1993 Eliminating or minimizing alkali–silica reactivity. Washington, DC: National Research Council

    Google Scholar 

  29. Diamond S and Ong S 1992 The mechanisms of lithium effects on ASR. In: Proceedings of the 9th International Conference on Alkali–Aggregate Reaction. London: Concrete Society of UK, pp. 269–278

  30. Mo X 2005 Laboratory study of LiOH in inhibiting alkali–silica reaction at 20°C: a contribution. Cem. Concr. Res. 35(3): 499–504

    Article  MathSciNet  Google Scholar 

  31. ASTM C1260-14 2014 Standard test method for potential alkali reactivity of aggregates (mortar-bar method), American Society of Testing and Materials. West Conshohocken, PA: ASTM International

  32. Gautam B P and Panesar D K 2017 The effect of elevated conditioning temperature on the ASR expansion, cracking and properties of reactive Spratt aggregate concrete. Constr. Build. Mater. 140: 310–320

    Article  Google Scholar 

  33. Morenon P, Multon S, Sellier A, Grimal E, Hamon F and Bourdarot E 2017 Impact of stresses and restraints on ASR expansion. Constr. Build. Mater. 140: 58–74

    Article  Google Scholar 

  34. Li B, Baingam L, Kurumisawa K, Nawa T and XiaoZhou L 2018 Micro-mechanical modelling for the prediction of alkali–silica reaction (ASR) expansion: influence of curing temperature conditions. Constr. Build. Mater. 164: 554–569

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Özer Sevim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demir, İ., Sevim, Ö. & Kalkan, İ. Microstructural properties of lithium-added cement mortars subjected to alkali–silica reactions. Sādhanā 43, 112 (2018). https://doi.org/10.1007/s12046-018-0901-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12046-018-0901-3

Keywords

Navigation