Skip to main content
Log in

Inverse approach for estimating boundary properties in a transient fin problem

  • Published:
Sādhanā Aims and scope Submit manuscript

Abstract

A solution methodology is proposed for an inverse estimation of boundary conditions from the knowledge of transient temperature data. A forward model based on prevalent time-dependent heat conduction fin equation is solved using a fully implicit finite volume method. First, the inverse model is formulated and accomplished for time-invariant heat flux at the fin base, and later extended to transient heat flux, base temperature and average heat transfer coefficient. Secondly, the Nusselt number is then replaced with Rayleigh number in the forward model to realistically estimate the base temperature, which varies with respect to time, based on in-house transient fin heat transfer experiments. This scenario further corroborates the validation of the proposed inverse approach. The experimental set-up consists of a mild steel \(250 \times 150 \times 6\, \hbox {mm}^3\) fin mounted centrally on an aluminium base \(250 \times 150 \times 8\, \hbox {mm}^3\) plate. The base is attached to an electrical heater and insulated with glass-wool to prevent heat loss to surroundings. Five calibrated K-type thermocouples are used to measure temperature along the fin. The functional form of the unknown parameters is not known beforehand; sensitivity studies are performed to determine suitability of the estimation and location of sensors for the inverse approach. Conjugate gradient method with adjoint equation is chosen as the inverse technique and the study is performed as a numerical optimization; subsequently, the estimates show satisfactory results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20

Similar content being viewed by others

References

  1. Colaco M J, Orlande H R and Dulikravich G S 2006 Inverse and optimization problems in heat transfer. J. Braz. Soc. Mech. Sci. Eng. 28(1): 1–24

    Article  Google Scholar 

  2. Beck J V, Blackwell B and Clair Jr. C R S 1985 Inverse Heat Conduction: Ill-Posed Problems. James Beck

  3. Beck J, Blackwell B, Haji-Sheikh A 1996 Comparison of some inverse heat conduction methods using experimental data. Int. J. Heat Mass Transf. 39(17): 3649–3657

    Article  Google Scholar 

  4. Beck J V, Blackwell B, Woodbury K A 1996 Comparison of some inverse heat conduction methods using experimental data. Int. J. Heat Mass Transf. 39: 3649–3657

    Article  Google Scholar 

  5. Jarny Y, Ozisik M, Bardon J 1991 A general optimization method using adjoint equation for solving multidimensional inverse heat conduction. Int. J. Heat Mass Transf. 34(11): 2911–2919

    Article  MATH  Google Scholar 

  6. Sawaf B 1995 Inverse heat conduction problems. Previews Heat Mass Transf. 6(21): 562–563

    Google Scholar 

  7. Huang C H, Chen C W 1998 A boundary element-based inverse-problem in estimating transient boundary conditions with conjugate gradient method. Int. J. Numer. Methods Eng. 42(5): 943–965.

    Article  MATH  Google Scholar 

  8. Colaco M J, Orlande H R 1999 Comparison of different versions of the conjugate gradient method of function estimation. Numer. Heat Transf. Part A Appl. 36(2): 229–249

    Article  Google Scholar 

  9. Huang C H, Wang S P 1999 A three-dimensional inverse heat conduction problem in estimating surface heat flux by conjugate gradient method. Int. J. Heat Mass Transf. 42(18): 3387–3403

    Article  MATH  Google Scholar 

  10. Cheng C H, Chang M H 2003 A simplified conjugate-gradient method for shape identification based on thermal data. Numer. Heat Transf. Part B Fundam. 43(5): 489–507

    Article  Google Scholar 

  11. Lee H L, Chou H M, Yang Y C 2004 The function estimation in predicting heat flux of pin fins with variable heat transfer coefficients. Energy Convers. Manag. 45(11): 1749–1758

    Article  Google Scholar 

  12. Huang C H, Wu H H 2006 An inverse hyperbolic heat conduction problem in estimating surface heat flux by the conjugate gradient method. J. Phys. D Appl. Phys. 39(18): 4087

    Article  Google Scholar 

  13. Haghighi M G, Eghtesad M, Malekzadeh P, Necsulescu D 2008 Two dimensional inverse heat transfer analysis of functionally graded materials in estimating time-dependent surface heat flux. Numer. Heat Transf. Part A Appl. 54(7): 744–762

    Article  Google Scholar 

  14. Zhou J, Zhang Y, Chen J, Feng Z 2010 Inverse estimation of surface heating condition in a three-dimensional object using conjugate gradient method. Int. J. Heat Mass Transf. 53(13): 2643–2654

    Article  MATH  Google Scholar 

  15. Mohammadiun M, Rahimi A, Khazaee I 2011 Estimation of the time dependent heat flux using the temperature distribution at a point by conjugate gradient method. Int. J. Therm. Sci. 50(12): 2443–2450

    Article  Google Scholar 

  16. Su J, Hewitt G F 2004 Inverse heat conduction problem of estimating time-varying heat transfer coefficient. Numer. Heat Transf. Part A Appl. 45(8): 777–789

    Article  Google Scholar 

  17. Jarny Y 2001 Determination of heat sources and heat transfer coefficient for two-dimensional heat flow: numerical and experimental study. Int. J. Heat Mass Transf. 44(7): 1309–1322

    Article  MATH  Google Scholar 

  18. Chen W L, Yang Y C, Lee H L 2007 Inverse problem in determining convection heat transfer coefficient of an annular fin. Energy Convers. Manag. 48(4): 1081–1088

    Article  Google Scholar 

  19. Jin B 2007 Conjugate gradient method for the Robin inverse problem associated with the Laplace equation. Int. J. Numer. Methods Eng. 71(4): 433–453

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang Y, Luo X, Song Y, Xie Q 2017 Simultaneous reconstruction of the surface heat flux and the source term in 3D linear parabolic problem by modified conjugate gradient method. Math. Methods Appl. Sci. 40(8): 2847-2858

    Article  MathSciNet  MATH  Google Scholar 

  21. Cheng L, Zhong F, Gu H, Zhang X 2016 Application of conjugate gradient method for estimation of the wall heat flux of a supersonic combustor. Int. J. Heat Mass Transf. 96: 249–255

    Article  Google Scholar 

  22. Ye J, Farge L, Andre S, Neveu A 2016 A numerical study of heat source re- construction for the advection–diffusion operator: a conjugate gradient method stabilized with SVD. Int. J. Therm. Sci. 104: 68–85

    Article  Google Scholar 

  23. Singh, K M, Yadav, D, Arpit, S, Mitra, S, Saha, K S 2016 Effect of nanofluid concentration and composition on laminar jet impinged cooling of heated steel plate. Appl. Therm. Eng. 100: 237–246

    Article  Google Scholar 

  24. Zhang D D, Zhang J H, Liu D, Zhao F Y, Wang H Q, Li X H 2016 Inverse conjugate heat conduction and natural convection inside an enclosure with multiple unknown wall heating fluxes. Int. J. Heat Mass Transf. 96: 312–329

    Article  Google Scholar 

  25. Ozisik M N, Orlande H R B 2000 Inverse Heat Transfer: Fundamentals and Applications. CRC Press, Boca Raton

    Google Scholar 

  26. Beck J V, Woodbury K A. 2016 Inverse heat conduction problem: sensitivity coefficient insights, filter coefficients, and intrinsic verification. Int. J. Heat Mass Transf. 97: 578–588

    Article  Google Scholar 

  27. Kern D Q, Kraus A D 1972 Extended Surface Heat Transfer. MCGrawHill, New York

    Google Scholar 

  28. Venugopal G, Deiveegan M, Balaji C, Venkateshan S 2008 Simultaneous retrieval of total hemispherical emissivity and specific heat from transient multimode heat transfer experiments. J. Heat Transf. 130(6): 061601

    Article  Google Scholar 

  29. Gnanasekaran N, Balaji C 2010 An inexpensive technique to simultaneously determine total emissivity and natural convection heat transfer coefficient from transient experiments. Exp. Heat Transf. 23(3): 235–258

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N Gnanasekaran.

Appendices

Nomenclature

\(A_c\) :

area of cross section

d :

direction of descent

g :

acceleration due to gravity

h :

convective heat transfer coefficient

M :

number of sensors

k :

thermal conductivity of fin

\(k_f\) :

thermal conductivity of fluid

L :

fin length

P(t):

unknown transient parameter

p :

fin perimeter

Nu :

Nusselt number

q :

heat flux

Ra :

Rayleigh number

T :

temperature

\(T_b\) :

base temperature

t :

time, s

\(T_{\infty }\) :

ambient temperature

x :

space coordinate

Y :

measured temperature

Greek symbols

\(\alpha \) :

thermal diffusivity

\(\beta \) :

coefficient of thermal expansion

\(\beta _{k}\) :

step size

\(\gamma \) :

coefficient of conjugation

\(\epsilon \) :

stopping criterion/error

\(\lambda \) :

Lagrange multiplier

\(\nu \) :

kinematic viscosity

\(\tau \) :

time step

Subscripts

exp :

experimental temperature

f :

final

i :

sensor index

m :

measured location

s :

simulated temperature

Superscripts

k :

iteration number

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gnanasekaran, N., Balaji, S. Inverse approach for estimating boundary properties in a transient fin problem. Sādhanā 43, 108 (2018). https://doi.org/10.1007/s12046-018-0895-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12046-018-0895-x

Keyword

Navigation