Advertisement

Sādhanā

, 43:97 | Cite as

Sub-4-micron full-field optical coherence tomography on a budget

  • HARI NANDAKUMAR
  • ADITHYA KOKKODU SUBRAMANIA
  • SHAILESH SRIVASTAVA
Article
  • 23 Downloads

Abstract

We evaluate the construction and performance of an ultra-low-cost full-field optical coherence tomography (FF-OCT) instrument, also known as an optical coherence microscope. Although the cost of construction of the instrument from off-the-shelf parts is at least ten times lower than those of commercial products, sub-4-micron axial and lateral resolutions are obtained, albeit at the cost of higher acquisition times. Standard test samples are imaged and the performance of the instrument is evaluated. The device is found to be useful in measuring length, dispersion and group refractive index as well. Suggestions for bettering performance are discussed.

Keywords

Optical coherence tomography coherence imaging interferometric imaging 

Notes

Acknowledgements

The authors wish to convey their gratitude to Bhagawan Sri Sathya Sai Baba, the founder Chancellor of their University, who guided and inspired us throughout this project. The authors’ department has infrastructure funding from Department of Science and Technology, Government of India (DST) (FIST 2012-2017 SR/FST/PSI-172/2012).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest to disclose.

References

  1. 1.
    Puliafito C A, Hee M R, Schuman J S and Fujimoto J G 1996 Optical coherence tomography of ocular diseases. Slack Incorporated, USA, pp. 3–4Google Scholar
  2. 2.
    Drexler W and Fujimoto J G (Eds.) 2008 Optical coherence tomography: technology and applications. Springer Science & Business Media, Germany, pp. V–XXVIII, 24Google Scholar
  3. 3.
    Swanson E A, Huang D, Lin C P, Puliafito C A, Hee M R and Fujimoto J G 1992 High-speed optical coherence domain reflectometry. Opt. Lett. 17(2): 151–153  https://doi.org/10.1364/ol.17.000151.CrossRefGoogle Scholar
  4. 4.
    Fercher A F, Mengedoht K and Werner W 1998 Eye-length measurement by interferometry with partially coherent light. Opt. Lett. 13(3): 186–188.  https://doi.org/10.1364/ol.13.000186.CrossRefGoogle Scholar
  5. 5.
    Hitzenberger C K, Drexler W and Fercher A F 1992 Measurement of corneal thickness by laser Doppler interferometry. Invest. Ophthalmol. Vis. Sci. 33(1): 98–103Google Scholar
  6. 6.
    Fujimoto J and Swanson E 2016 The development, commercialization, and impact of Optical Coherence Tomography – history of optical coherence tomography Invest Ophthalmol Vis Sci. 57(9): OCT1–OCT13.  https://doi.org/10.1167/iovs.16-19963.
  7. 7.
    Subhash H M, Hogan J N and Leahy M J 2015 Multiple-reference optical coherence tomography for smartphone applications. SPIE Newsroom.  https://doi.org/10.1117/2.1201503.005807 Google Scholar
  8. 8.
    Duc Nguyen V, Weiss N, Beeker W, Hoekman M, Leinse A, Heideman R G, van Leeuwen T G and Kalkman J 2012 Integrated-optics-based swept-source optical coherence tomography. Opt. Lett. 37(23): 4820–4822.  https://doi.org/10.1364/ol.37.004820.CrossRefGoogle Scholar
  9. 9.
    Beaurepaire E, Boccara A C, Lebec M, Blanchot L and Saint-Jalmes H 1998 Full-field optical coherence microscopy. Opt. Lett. 23(4): 244–246.  https://doi.org/10.1364/ol.23.000244 CrossRefGoogle Scholar
  10. 10.
    Dubois A, Vabre L, Boccara A C and Beaurepaire E 2002 High-resolution full-field optical coherence tomography with a Linnik microscope. Appl. Opt. 41(4): 805–812.  https://doi.org/10.1364/ao.41.000805 CrossRefGoogle Scholar
  11. 11.
    Subhash H M 2012 Full-field and single-shot full-field optical coherence tomography: a novel technique for biomedical imaging applications. Adv. Opt. Technol.  https://doi.org/10.1155/2012/435408
  12. 12.
    Thouvenin O, Apelian C, Nahas A, Fink M and Boccara C 2017 Full-field optical coherence tomography as a diagnosis tool: recent progress with multimodal imaging. Appl. Sci. 7(3): 236.  https://doi.org/10.3390/app7030236 CrossRefGoogle Scholar
  13. 13.
    Huang D, Swanson E A, Lin C P, Schuman J S, Stinson W G, Chang W, Hee M R, Flotte T, Gregory K, Puliafito C A and Fujimoto J G 1991 Optical coherence tomography. Science 254(5035): 1178.  https://doi.org/10.1126/science.1957169 CrossRefGoogle Scholar
  14. 14.
    Fercher A F, Hitzenberger C K, Kamp G and El-Zaiat S Y 1995 Measurement of intraocular distances by backscattering spectral interferometry. Opt. Commun. 117(1–2): 43–48.  https://doi.org/10.1016/0030-4018(95)00119-s CrossRefGoogle Scholar
  15. 15.
    Chinn S R, Swanson E A and Fujimoto J G 1997 Optical coherence tomography using a frequency-tunable optical source. Opt. Lett. 22(5): 340–342.  https://doi.org/10.1364/ol.22.000340 CrossRefGoogle Scholar
  16. 16.
    Grebenyuk A, Federici A, Ryabukho V and Dubois A 2014 Numerically focused full-field swept-source optical coherence microscopy with low spatial coherence illumination. Appl. Opt. 53(8): 1697–1708.  https://doi.org/10.1364/ao.53.001697 CrossRefGoogle Scholar
  17. 17.
    Canon, Inc. 2011 Canon EOS Rebel T3 EOS 1100 D instruction manual Google Scholar
  18. 18.
    Johnson M K 2009 Capturing linear images. http://www.mit.edu/~kimo/blog/linear.html
  19. 19.
    Coffin D 2012 Decoding raw digital photos in Linux (version 9.27) [software]. http://www.cybercom.net/~dcoffin/dcraw/
  20. 20.
    Grieve K, Dubois A, Simonutti M, Paques M, Sahel J, Le Gargasson J F and Boccara C 2005 In vivo anterior segment imaging in the rat eye with high speed white light full-field optical coherence tomography. Opt. Exp. 13(16): 6286–6295.  https://doi.org/10.1364/opex.13.006286 CrossRefGoogle Scholar
  21. 21.
    Eaton J W, Bateman D, Hauberg S and Wehbring R 2015 GNU Octave version 4.0. 0 manual: a high-level interactive language for numerical computations. http://www.gnu.org/software/octave/doc/interpreter
  22. 22.
    Kent B R 2015 3D scientific visualization with blender. Morgan & Claypool, USAGoogle Scholar
  23. 23.
    Blender Foundation 2016 Blender (version 2.77) [software]. http://www.blender.org/
  24. 24.
    Wang L V and Wu H I 2012 Biomedical optics: principles and imaging. John Wiley & Sons, USA, p. 208Google Scholar
  25. 25.
    Coello Y, Xu B, Miller T L, Lozovoy V V and Dantus M 2007 Group-velocity dispersion measurements of water, seawater, and ocular components using multiphoton intrapulse interference phase scan. Appl. Opt. 46(35): 8394–8401.  https://doi.org/10.1364/ao.46.008394 CrossRefGoogle Scholar
  26. 26.
    Cheng H C and Liu Y C 2010 Simultaneous measurement of group refractive index and thickness of optical samples using optical coherence tomography. Appl. Opt. 49(5): 790–797.  https://doi.org/10.1364/ao.49.000790 CrossRefGoogle Scholar
  27. 27.
    Polyanskiy M N Refractive index database https://refractiveindex.info/ accessed on 2017-04-21
  28. 28.
    Hale G M and Querry M R 1973 Optical constants of water in the 200-nm to 200-μm wavelength region. Appl. Opt. 12(3): 555–563.  https://doi.org/10.1364/ao.12.000555 CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Department of PhysicsSri Sathya Sai Institute of Higher Learning, Prasanthi NilayamAnantapurIndia

Personalised recommendations