Skip to main content
Log in

N-PSO: endmember extraction using advance particle swarm optimization for NLMM

  • Published:
Sādhanā Aims and scope Submit manuscript

Abstract

This paper presents a fully unsupervised endmember extraction technique for hyperspectral image unmixing using nonlinear mixing model. The underlying idea of the model is that the pixel reflectances are nonlinear functions of pure spectral components contaminated by an additive noise. These nonlinear functions are approximated using polynomial functions, leading to a polynomial post-nonlinear mixing model (PPNM). In an unknown environment, the evaluation of the parameters involved in PPNM model is a tedious task, which is categorized as an NP hard problem. A method based on the combination of swarm intelligence, least-square (LS) and sub-gradient-based optimization (SO) is proposed to estimate the parameters involved in the model. The particle swarm optimization (PSO) is used to search the optimal endmember combination in the feasible solution space. The nonlinearity and respective abundances are evaluated using the LS and SO method, respectively. The proposed method is equipped with an adaptive tuning parameter-free mechanism and modified updating strategy. This strategy not only improves the result in terms of overall accuracy but also maintains physical constraints on the value of the resultant endmember set. The proposed method has been evaluated using simulated and real hyperspectral scenes. The experimental results on the hyperspectral scenes show that the proposed method obtains a higher extraction precision than those of the existing endmember extraction algorithms. Statistical analysis on a real hyperspectral image shows that the results obtain using N-PSO are 20–40% better than those from the existing approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23

Similar content being viewed by others

References

  1. Goetz A, Vane G, Solomon J and Rock B 1985 Imaging spectrometry for earth remote sensing. Science 228: 1147–1153

    Article  Google Scholar 

  2. Green R O, et al 1998 Imaging spectroscopy and the airborne visible–infrared imaging spectrometer (AVIRIS). Remote Sens. Environ. 65(3): 227–248

    Article  Google Scholar 

  3. Hapke B W 1981 Bidirectional reflectance spectroscopy: 1. Theory. J. Geophys. Res. 86(B4): 3039

    Article  Google Scholar 

  4. Heylen R, Parente M and Gader P 2014 A review of nonlinear hyperspectral unmixing methods. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 7(6): 1844–1865

  5. Dobigeon N, et al 2013 Nonlinear unmixing of hyperspectral images. IEEE Signal Process. Mag. 31(1): 82–94.

    Article  MathSciNet  Google Scholar 

  6. Chang C I and Plaza A 2006 A fast iterative algorithm for implementation of pixel purity index. IEEE Geosci. Remote Sens. Lett. 3(1): 63–67

    Article  Google Scholar 

  7. Winter M E 1999 N-FINDR: an algorithm for fast autonomous spectral end-member determination in hyperspectral data. In: Proceedings of the SPIE Conference on Imaging Spectrometry, Pasadena, CA, pp. 266–275

  8. Nascimento J and Bioucas-Dias J 2015 Vertex component analysis: a fast algorithm to unmix hyperspectral data. IEEE Trans. Geosci. Remote Sens. 43(4): 898–910

    Article  Google Scholar 

  9. Li J and Bioucas-Dias J 2008 Minimum volume simplex analysis: a fast algorithm to unmix hyperspectral data. In: Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, IGARSS2008, Boston,

  10. Ambikapathi A, Chan T H, Ma W K and Chi C Y 2011 Chance constrained robust minimum volume enclosing simplex algorithm for hyperspectral unmixing. IEEE Trans. Geosci. Remote Sens. 49(11): 4194–4209

    Article  Google Scholar 

  11. Chan T H, Ma W K, Ambikapathi A and Chi C Y 2011 A simplex volume maximization framework for hyperspectral endmember extraction. IEEE Trans. Geosci. Remote Sens. 49(11): 4177–4193

    Article  Google Scholar 

  12. Bioucas-Dias J 2009 A variable splitting augmented Lagrangian approach to linear spectral unmixing. In: Proceedings of the IEEE Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, pp. 1–4

  13. Zhang B, Gao J, Gao L and Sun X 2013 Improvements in ant colony optimization algorithm for endmember extraction from hyperspectral images. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 6(2): 522–530

  14. Zhang B, Sun X, Gao L and Yang L 2011 Endmember extraction of hyperspectral remote sensing images based on the discrete particle swarm optimization algorithm. IEEE Trans. Geosci. Remote Sens. 49(11): 4173–4176

    Article  Google Scholar 

  15. Ghamisi P and Benediktsson J A 2013 Feature selection based on hybridization of genetic algorithm and particle swarm optimization. IEEE Trans. Geosci. Remote Sens. 12(2): 309–313

    Article  Google Scholar 

  16. Zhong Y, Zhao L, and Zhang L 2014 An adaptive differential evolution endmember extraction algorithm for hyperspectral remote sensing imagery. IEEE Geosci. Remote Sens. Lett. 11(6): 1061–1065

    Article  Google Scholar 

  17. Heylen R, Scheunders P, Rangarajan A and Gader P 2015 Nonlinear unmixing by using different metrics in a linear unmixing chain. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 8(6): 2655–2664

  18. Ammanouil R, Ferrari A, Richard C and Mathieu S 2017 Nonlinear unmixing of hyperspectral data with vector-valued kernel functions. IEEE Trans. Image Process. 26(1): 340–354

    Article  MathSciNet  Google Scholar 

  19. Févotte C and Dobigeon N 2015 Nonlinear hyperspectral unmixing with robust nonnegative matrix factorization. IEEE Trans. Image Process. 24(12): 4810–4819

    Article  MathSciNet  Google Scholar 

  20. Mogale D G, Kumar S K, Mrquez F P G and Tiwari M K 2017 Bulk wheat transportation and storage problem of public distribution system. Comput. Ind. Eng. 104(C): 80–97

  21. Maiyar L M and Thakakr J J, 2017 A combined tactical and operational deterministic food grain transportation model: particle swarm based optimization approach. Comput. Ind. Eng. 110: 30–42

    Article  Google Scholar 

  22. Maiyar L M, Thakakr J J, Awasthi A and Tiwari M K 2015 Development of an effective cost minimization model for food grain shipments. IFAC-PapersOnLine 48(3): 881–886

    Article  Google Scholar 

  23. Mogale D G, Dolgui A, Kandhway R, Kumar S K and Tiwari M K 2017 A multi-period inventory transportation model for tactical planning of food grain supply chain. Comput. Ind. Eng. 110: 379–394

    Article  Google Scholar 

  24. De A, Mamanduru V K R, Gunasekaran A, Subramanian N and Tiwari M K 2016 Composite particle algorithm for sustainable integrated dynamic ship routing and scheduling optimization. Comput. Ind. Eng. 96: 201–215

    Article  Google Scholar 

  25. De A, Kumar S K, Gunasekaran A and Tiwari M K 2017 Sustainable maritime inventory routing problem with time window constraints. Eng. Appl. Artif. Intell. 61: 77–95

    Article  Google Scholar 

  26. De A, Awasthi A and Tiwari M K 2017 Robust formulation for optimizing sustainable ship routing and scheduling problem. IFAC-PapersOnLine 48(3): 368–373

    Article  Google Scholar 

  27. Chen M C, Hsiao Y H, Reddy R H and Tiwari M K 2016 The self-learning particle swarm optimization approach for routing pickup and delivery of multiple products with material handling in multiple cross-docks. Transport. Res. E: Logist. Transport. Rev. 91: 208–226

    Article  Google Scholar 

  28. Bioucas-Dias J M and Nascimento J M P 2008 Hyperspectral subspace identification. IEEE Trans. Geosci. Remote Sens. 46(8): 2435–2445

    Article  Google Scholar 

  29. Altmann Y, Halimi A, Dobigeon N and Tourneret J Y 2012 Supervised nonlinear spectral unmixing using a postnonlinear mixing model for hyperspectral imagery. IEEE Trans. Image Process. 21(6): 3017–3025

    Article  MathSciNet  MATH  Google Scholar 

  30. Kennedy J and Eberhart R C 1995 Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, Perth, Australia, pp. 1942–1948

  31. Heinz D C, et al 2001 Fully constrained least squares linear spectral mixing analysis method for material quantification in hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 39(3): 529–545

    Article  Google Scholar 

  32. http://www.lx.it.pt/~bioucas/code.htm. Visiting date: 10 May 2016

  33. http://speclab.cr.usgs.gov/spectral-lib.html. Visiting date: 12 May 2016

  34. http://aviris.jpl.nasa.gov/data/free_data.html. Visiting date: 1 June 2016

  35. http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote. Visiting date: 1 June 2016

  36. http://www.lx.it.pt/~bioucas/code.htm. Visiting date: 2 Dec 2016

  37. https://sites.google.com/site/robheylenresearch/code. Visiting date: 2 Jan 2017

  38. https://www.irit.fr/~Cedric.Fevotte/publications.html. Visiting date: 3 Jan 2017

  39. Bakos K, Marpu P R and Gamba P 2011 Decision fusion of multiple classifiers for hyperspectral data classification. In: Prasad S, Bruce L M and Chanussot J (Eds.) Optical remote sensing: advances in signal processing and exploitation techniques, 1st ed. Augmented vision and reality. New York: Springer-Verlag

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omprakash Tembhurne.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tembhurne, O., Shrimankar, D. N-PSO: endmember extraction using advance particle swarm optimization for NLMM. Sādhanā 43, 141 (2018). https://doi.org/10.1007/s12046-018-0839-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12046-018-0839-5

Keywords

Navigation