Sādhanā

, 43:46 | Cite as

Assessment of the toughness of fibre-reinforced concrete using the R-curve approach

  • Stefie J Stephen
  • Ravindra Gettu
  • Luiz Eduardo Teixeira Ferreira
  • Sujatha Jose
Article
  • 43 Downloads

Abstract

The fracture response of brittle materials like concrete can be characterised using modified linear elastic fracture mechanics models, such as the rising resistance curve (R-curve). In this study, the R-curve, determined by utilising the experimental response in the notched beam test with mode I fracture, is proposed as a measure of the toughness of fibre-reinforced concretes (FRCs). The unambiguity of the R-curve obtained is assessed by comparing the predicted flexural response of specimens of different geometries with experimental data. The variation in the R-curves with the dosage of steel and polymer fibres is also discussed.

Keywords

R-curve linear elastic fracture mechanics mode I fracture notched beam test flexural toughness fibre-reinforced concrete 

References

  1. 1.
    Gopalaratnam V S and Gettu R 1995 On the characterization of flexural toughness in fibre reinforced concretes. Cem. Concr. Compos. 17(3): 239–254CrossRefGoogle Scholar
  2. 2.
    Nayar S K, Gettu R and Krishnan S 2014 Characterisation of the toughness of fibre reinforced concrete – revisited in the Indian context. Indian Concr. J. 88(2): 8–23Google Scholar
  3. 3.
    ASTM C1609/C1609M-10 2010 Standard Test Method for Flexural Performance of Fiber Reinforced Concrete (Using Beam with Third-Point Loading), American Society of Testing and Materials, USAGoogle Scholar
  4. 4.
    JSCE Part III-2 (SF1–SF4) 1984 Method of Tests for Steel Fiber Reinforced Concrete. Concrete Library of JSCE, Japan Society of Civil EngineersGoogle Scholar
  5. 5.
    RILEM TC 162-TDF 2002 Test and design methods for steel fibre reinforced concrete: Bending test – Final recommendation. Mater Struct. 35(9): 579–582CrossRefGoogle Scholar
  6. 6.
    EN 14651 2005 Test method for metallic fibered concretemeasuring the flexural tensile strength (limit of proportionality (LOP), residual), British Standards InstitutionGoogle Scholar
  7. 7.
    ICI-TC/01.1 2014 Test methods for the flexural strength and toughness parameters of fiber reinforced concrete, Indian concrete institute technical committee recommendation. Indian Concr. Inst. J. 15(2): 39–43Google Scholar
  8. 8.
    Ouyang C, Mobasher B and Shah S P 1990 An R-curve approach for fracture of quasi-brittle materials. Eng. Fract. Mech. 37(4): 901–913CrossRefGoogle Scholar
  9. 9.
    Eissa A and Batson G 1996 Model for predicting the fracture process zone and r-curve for high strength FRC. Cem. Concr. Compos. 18(2): 125–133CrossRefGoogle Scholar
  10. 10.
    Mobasher B and Li C Y 1996 Mechanical properties of hybrid cement-based composites. ACI Mater. J. 93: 284–292Google Scholar
  11. 11.
    Dey V, Kachala R, Bonakdar A and Mobasher B 2015 Mechanical properties of micro and sub-micron wollastonite fibers in cementitious composites. Constr. Build. Mater. 82: 351–359CrossRefGoogle Scholar
  12. 12.
    Gettu R, Bažant Z P and Karr M E 1990 Fracture properties and brittleness of high-strength concrete. ACI Mater. J. 87(6): 608–618Google Scholar
  13. 13.
    Bažant Z P, Gettu R and Kazemi M T 1991 Identification of nonlinear fracture properties from size effect tests and structural analysis based on geometry-dependent R-curves. Int. J. Rock Mech. Min. Sci. 28(1): 43–51CrossRefGoogle Scholar
  14. 14.
    Karihaloo B L 1995 Fracture mechanics and structural concrete. 1st edition, Longman Scientific and Technical, UKGoogle Scholar
  15. 15.
    Foote R M L, Mai Y-W and Cotterell B 1986 Crack growth resistance curves in strain-softening materials. J. Mech. Phys. Solids. 34(6): 593–607CrossRefGoogle Scholar
  16. 16.
    Cotterell B and Mai Y-W 1987 Crack growth resistance curve and size effect in the fracture of cement paste. J. Mater. Sci. 22(8): 2734–2738CrossRefGoogle Scholar
  17. 17.
    Banthia N and Sheng J 1996 Fracture toughness of micro-fiber reinforced cement composites. Cem. Concr. Compos. 18(4): 251–269CrossRefGoogle Scholar
  18. 18.
    Mai Y W 2002 Cohesive zone and crack-resistance (R)-curve of cementitious materials and their fibre-reinforced composites. Eng. Fract. Mech. 69(2): 219–234CrossRefGoogle Scholar
  19. 19.
    Wecharatana M and Shah S P 1983 Predictions of nonlinear fracture process zone in concrete. ASCE: J Eng. Mech. 109(5): 1231–1246Google Scholar
  20. 20.
    Bažant Z P, Kim J K and Pfeiffer P A 1986 Nonlinear fracture properties from size effect tests. J Struct. Eng. 112(2): 289–307CrossRefGoogle Scholar
  21. 21.
    Kumar S and Barai S V 2010 Determining the double-K fracture parameters for three-point bending notched concrete beams using weight function. Fatigue Fract. Eng. Mater. Struct. 33(10): 645–660CrossRefGoogle Scholar
  22. 22.
    Brake N A 2012 The characterization of a plain concrete equivalent elastic fatigue crack resistance curve under various loading regimes, Doctoral Thesis, Michigan State University, Michigan, USAGoogle Scholar
  23. 23.
    Zhao Y, Chang J and Gao H 2015 A three-parameter R-curve of concrete-like quasi-brittle materials. Constr. Build. Mater. 78: 243–249CrossRefGoogle Scholar
  24. 24.
    Morel S, Lespine C, Coureau J, Planas J and Dourado N 2010 Bilinear softening parameters and equivalent LEFM R-curve in quasibrittle failure. Int. J Solids. Struct. 47(6): 837–850CrossRefMATHGoogle Scholar
  25. 25.
    Mobasher B, Bonakdar A and Bakhshi M 2015 Back-calculation procedure for cyclic flexural fracture tests in fiber reinforced concrete. Special Publication ACI J. 300: 1–22Google Scholar
  26. 26.
    García-Álvarez V O 1997 Study of mixed mode fracture in quasi-brittle materials (in Spanish). Doctoral Thesis, Universitat Politècnica de Catalunya, Barcelona, SpainGoogle Scholar
  27. 27.
    Ferreira L E T, Bittencourt T N, Sousa J L A O and Gettu R 2002 R-curve behavior in notched beam tests of rocks. Eng. Fract. Mech. 69(17): 1845–1852CrossRefGoogle Scholar
  28. 28.
    García-Álvarez V O, Gettu R and Carol I 2017 Determination of the energy release rate function for an eccentrically notched center-loaded beam using elastic fracture analysis. J. Struct. Eng. 44(1): 88–94Google Scholar
  29. 29.
    Xu S and Reinhardt H W 1998 Crack extension resistance and fracture properties of quasi-brittle softening materials like concrete based on the complete process of fracture. Int. J. Fract. 92(1): 71–99CrossRefGoogle Scholar
  30. 30.
    Wu Z, Yang S, Hu X and Zheng J 2006 An analytical model to predict the effective fracture toughness of concrete for three-point bending notched beams. Eng. Fract. Mech. 73(15): 2166–2191CrossRefGoogle Scholar
  31. 31.
    Wallin K 2013 A simple fracture mechanical interpretation of size effects in concrete fracture toughness tests. Eng. Fract. Mech. 99: 18–29CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  • Stefie J Stephen
    • 1
  • Ravindra Gettu
    • 1
  • Luiz Eduardo Teixeira Ferreira
    • 2
  • Sujatha Jose
    • 1
  1. 1.Department of Civil EngineeringIndian Institute of Technology MadrasChennaiIndia
  2. 2.Department of EngineeringFederal University of LavrasLavrasBrazil

Personalised recommendations