Skip to main content
Log in

The crack growth resistance of thin steel sheets under eccentric tension

  • Published:
Sādhanā Aims and scope Submit manuscript

Abstract

The stable crack growth in thin steel sheets is the topic of this paper. The crack opening was observed using a videoextensometry system, allowing the crack extension determination. JR-curve and δR-curve were established from obtained data. The ductile tearing properties of different thin sheets of steel were determined, including the impact of the specimen orientation, from test performed on compact tension specimens loaded under two conditions. The effect of the material, the rolling direction, and loading rate on the crack growth resistance of thin steel sheets was analyzed. In addition to the crack growth resistance, J-integral values for crack initiation were also estimated. The relation between J i and J0.2 was assessed using the basic mathematical and statistical methods. This relation was described by a linear regression model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

A :

area under the load–displacement curve

A 80 :

elongation (initial length 80 mm)

a :

crack length

a 0 :

initial crack length

a SZ :

stretch zone height

Δa :

crack propagation

α :

parameter, values vary from 1 to 20

B :

thickness

CMOD :

crack mouth opening displacement

CT:

compact tension

CTOD (δ):

crack tip opening displacement

δ 0 :

CTOD at which stretch zones appear on fracture surfaces

δ i :

critical CTOD for ductile crack initiation

δR-curve:

CTOD resistance curve

dCTOD/da :

slope of δR-curve

DP:

dual-phase steel

dJ/da :

slope of JR-curve

E :

Young’s modulus

HR 45:

microalloyed steel

IF:

interstitial free steel

J-integral:

line integral (path-independent) around the crack tip

J i :

value of J-integral for observable crack initiation

JR-curve:

J-integral resistance curve

J 0.2 :

value of J-integral of conventional crack initiation for 0.2 mm crack propagation

R e :

yield strength

R m :

tensile strength

R p0.2 :

0.2% offset yield strength

SEM:

scanning electron microscopy

SZ:

stretch zone

T :

tearing modulus

V :

notch opening

W :

width

w SZ :

stretch zone width

z :

distance of measurement point from the load-line

References

  1. Veles P 1989 Mechanical properties and material testing. Bratislava, ALFA (in Slovak)

    Google Scholar 

  2. Pešek L, Oravec K and Boháč I 1994 Resistance to stable crack growth in welded joints of microalloyed strip steel. In: Zváranie 94, 11.-12.5.1994, Bratislava, Slovakia (in Slovak)

  3. Pešek L and Boháč I 1994 Resistance to stable crack growth in welded joints rated by a one-sample method. In: Materiál v inžinierskej praxi 94, 16.-18.5.1994, Herľany, Slovakia (in Slovak)

  4. Pešek L and Oravec K 1994 Patterns of stable crack growth in microalloyed steel strips. Oceľ. Plechy 21: 19–25 (in Slovak)

    Google Scholar 

  5. Saxena A 1998 Nonlinear fracture mechanics for engineers. Boca Raton, CRC Press

    MATH  Google Scholar 

  6. Bassim M N 1995 Use of the stretch zone for the characterization of ductile fracture. J. Mater. Proc. Technol. 54: 109–113

    Article  Google Scholar 

  7. Barnhurst R J and Gruzleski J E 1985 Fracture toughness and its development in high purity cast carbon and low alloy steels. Metall. Trans. A. 16(4): 613–622

    Article  Google Scholar 

  8. Ambriško Ľ and Pešek L 2014 The stretch zone of automotive steel sheets. Sadhana 39: 525–530

    Article  Google Scholar 

  9. Mao X 1991 Influence of specimen size on I–III mixed mode fracture, fracture toughness JIC and plastic dissipation with crack growth dWp/da. Eng. Fract. Mech. 38: 241–254

    Article  Google Scholar 

  10. Billy J, Slávik P, Mikolaj Ľ, Hala K and Záboj J 1997 Hot-dip galvanized sheets produced by VSŽ for automotive industry. In: Sheets for the automotive industry. Stará Lesná, Slovakia (in Slovak)

  11. Bhadeshia H K D H and Honeycombe R W K 2006 Steels: microstructure and properties. Oxford: Elsevier

    Google Scholar 

  12. Billy J, Štefan B, Slávik P, Gašpar V, Mikolaj Ľ and Záboj J 1994 Specifics of dip galvanized sheet for the purpose of bodywork. Hut. Listy 5: 15–20 (in Slovak)

    Google Scholar 

  13. Hüper T, Endo S, Ishikawa N and Osawa K 1999 Effect of volume fraction of constituent phases on the stress-strain relationship of dual phase steels. ISIJ Int. 39(3): 288–294

    Article  Google Scholar 

  14. Kuzičkin D et al 1988 Structural steels formed and for castings. Bratislava, Alfa (in Slovak)

    Google Scholar 

  15. Štefan B and Šlesár M 1992 Physical-metallurgical concept of modern deep drawing cold rolled steels. Oceľ. Plechy 1–2: 3–10

    Google Scholar 

  16. Cosmo M, Galantucci L M and Tricarico L 1999 Design of process parameters for dual phase steel production with strip rolling using the FEM. J. Mater. Technol. 92–93: 486–493

    Article  Google Scholar 

  17. Juhar Ľ and Peterčáková A 2005 Production and properties of the new hot rolled ferritic–martensitic steels. Acta Metall. Slovaca 11: 104–108

    Google Scholar 

  18. Skočovský P and Konečná R 1996 New construction materials, selected chapter II. Žilina, University of Žilina (in Slovak)

    Google Scholar 

  19. Porter D A and Easterling K E 1996 Phase transformations in metals and alloys. London: Chapman & Hall

    Google Scholar 

  20. Ambriško Ľ and Pešek L 2011 Determination the crack growth resistance of automotive steel sheets. Chem. Listy 105(17): 767–768

    Google Scholar 

  21. Sultan A, Pasha R A, Ali M, Khan M Z, Khan M A, Dar N U and Shah M 2013 Numerical simulation and experimental verification of CMOD in SENT specimen: application on FCGR of welded tool steel. Acta Metall. Sinica 26: 92–96

    Article  Google Scholar 

  22. Kulkarni D M, Prakash R, Talan P and Kumar A N 2004 The effect of specimen thickness on the experimental and finite element characterization of CTOD in extra deep drawn steel sheets. Sadhana 29: 365–380

    Article  Google Scholar 

  23. Gullerud A S, Dodds Jr. R H, Hampton R W and Dawicke D S 1999 3D modeling of ductile crack growth in thin sheet metals: computational aspects and validation. Eng. Fract. Mech. 63: 347–374

    Article  Google Scholar 

  24. Shahani A R, Rastegar M, Botshekanan Dehkordi M and Moayeri Kashani H 2010 Experimental and numerical investigation of thickness effect on ductile fracture toughness of steel alloy sheets. Eng. Fract. Mech. 77: 646–659

    Article  Google Scholar 

  25. Ambriško Ľ and Pešek L 2009 Accuracy of strain measurement using ME 46 videoextensometric system. Acta Metall. Slovaca 15(2): 105–111

    Google Scholar 

  26. Ambriško Ľ, Kandra T and Pešek L 2011 Rating indentation and deformation characteristics laser welds. Chem. Listy 105(14): 150–154

    Google Scholar 

  27. BS 5762 1979 Methods for crack opening displacement (COD) Testing

  28. ESIS PI-92 1992 Recommendations for determining the fracture resistance of ductile materials

  29. Zhu X 2009 J-integral resistance curve testing and evaluation. J. Zhejiang Univ.-Sci. A 10(11): 1541–1560

  30. Lampman S R et al 1996 ASM handbook. Fatigue and fracture, vol. 19. Ohio, ASM International

  31. Broek D 1984 Elementary engineering fracture mechanics. The Hague, Martinus Nijhoff Publisher

    MATH  Google Scholar 

  32. Kayamori Y, Hillmansen S, Crofton P S J and Smith R A 2007 Ductile crack propagation characteristics in steel thin single edge notched tension specimens. Mater. Sci. Forum 539–543: 2180–2185

    Article  Google Scholar 

  33. Bernstone C and Heyden A 2009 Image analysis for monitoring of crack growth in hydropower concrete structures. Measurement 42: 878–893

    Article  Google Scholar 

  34. Richter-Trummer V, Marques E A, Chaves F J P, Tavares J M R S, da Silva L F M and de Castro P M S T 2011 Analysis of crack growth behavior in a double cantilever beam adhesive fracture test by different digital image processing techniques. Materialwiss. Werkstofftech. 42(5): 452–459

    Article  Google Scholar 

  35. Shih C F 1981 Relationship between crack tip opening displacement for stationary and extending cracks. J. Mech. Phys. Solids. 29: 305–326

    Article  MATH  Google Scholar 

  36. Dhar S, Marie S and Chapuliot S 2008 Determination of critical fracture energy, Gfr, from crack tip stretch. Int. J. Pressure Vessels Piping 85: 313–321

    Article  Google Scholar 

  37. Brocks W, Anuschewski P and Scheider I 2010 Ductile tearing resistance of metal sheets. Eng. Failure Anal. 17: 607–616

    Article  Google Scholar 

  38. Wagner D, Moreno J C, Prioul C, Frund J M and Houssin B 2002 Influence of dynamic strain aging on the ductile tearing of C–Mn steels: modelling by a local approach method. J. Nucl. Mater. 300: 178–191

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ľ AMBRIŠKO.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AMBRIŠKO, Ľ., PEŠEK, L. The crack growth resistance of thin steel sheets under eccentric tension. Sādhanā 43, 25 (2018). https://doi.org/10.1007/s12046-018-0785-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12046-018-0785-2

Keywords

Navigation