Advertisement

Sādhanā

, 43:20 | Cite as

Biomedical image retrieval using microscopic configuration with local structural information

  • G DEEP
  • L KAUR
  • S GUPTA
Article
  • 57 Downloads

Abstract

This paper focusses on the use of microscopic configuration (MiC) for discriminative information to retrieve lung cancer images. Existing local binary pattern (LBP) detects the local structures, such as lighting spots and edges in images, whereas the local configuration pattern (LCP) explores multi-channel discriminative information of both the MiC and local structures of images. Both methods are used to extract the rotation- and scale-invariant features from all lung cancer images. The performance of these methods is tested by conducting experiments on benchmark biomedical database of Lung Image Database Consortium and Image Database Resource Initiative-computer tomography. The database includes CT images with region of interest. The results show that LCP yields significant improvement in terms of average retrieval precision and average retrieval rate as compared with LBP and other state-of-the-art texture descriptors.

Keywords

Image retrieval local binary pattern local configuration pattern medical imaging texture 

Notes

Acknowledgements

We wish to express our appreciation to the Lung Image Database Consortium, who contributed to the creation of the LIDC collection as an independent testing dataset. We would like to thank anonymous reviewers for insightful comments and valuable suggestions to improve the quality of this manuscript.

References

  1. 1.
    Giuliano P, Pietro Z and Guido M C 2013 Combining color and shape descriptors for 3D model retrieval. Sig. Process. Imag. Commun. 28: 608–623Google Scholar
  2. 2.
    Michalis L, Apostolos A, Dimitrios R and Petros D 2013 Multimedia search and retrieval using multimodal annotation propagation and indexing techniques. Sig. Process. Imag. Commun. 28: 351–367Google Scholar
  3. 3.
    Vo A P N and Soontorn O 2010 A study of relative phase in complex wavelet domain: property, statistics and applications in texture image retrieval and segmentation. Sig. Process. Imag. Commun. 25: 28–46Google Scholar
  4. 4.
    Gianluca F, Skjalg L and Massimo B 2013 Selection of local features for visual search. Sig. Process. Imag. Commun. 28: 311–322Google Scholar
  5. 5.
    Sihyoung L, Wesley D N and Yong M R 2010 Tag refinement in an image folksonomy using visual similarity and tag co-occurrence statistics. Sig. Process. Imag. Commun. 25: 761–773Google Scholar
  6. 6.
    Yue G, Qionghai D, Meng W and Naiyao Z 2011 3D model retrieval using weighted bipartite graph matching. Sig. Process. Imag. Commun. 26: 39–47Google Scholar
  7. 7.
    Manjunath K N, Renuka A and Niranjan U C 2007 Linear models of cumulative distribution function for content-based medical image retrieval. J. Med. Syst. 31: 433–443CrossRefGoogle Scholar
  8. 8.
    Ojala T, Pietikainen M and Harwood D 1996 A comparative study of texture measures with classification based on feature distributions. Pattern Recogn. 29(1): 51–59CrossRefGoogle Scholar
  9. 9.
    Ojala T, Pietikainen M and Maeenpaa T 2002 Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7): 971–987CrossRefGoogle Scholar
  10. 10.
    Oliver A, Lladó X, Freixenet J and Martí J 2007 False positive reduction in mammographic mass detection using local binary patterns. In: Proceedings of the Medical Image Computing and Computer-Assisted Intervention (MICCAI 2007), Brisbane, Australia, Lecture Notes in Computer Science 4791. Springer, Berlin, Heidelberg, pp. 286–293Google Scholar
  11. 11.
    Unay D and Ekin A 2008 Intensity versus texture for medical image search and retrieval. In: Proceedings of the Fifth IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI 2008), pp. 241–244Google Scholar
  12. 12.
    Keramidas E G, Iakovidis D K, Maroulis D and Dimitropoulos N 2008 Thyroid texture representation via noise resistant image features. In: Proceedings of the 21st IEEE International Symposium on Computer-Based Medical Systems (CBMS 2008), pp. 560–565Google Scholar
  13. 13.
    Nanni L and Lumini A 2008 A reliable method for cell phenotype image classification. Artif. Intell. Med. 43(2): 87–97CrossRefGoogle Scholar
  14. 14.
    Nanni L and Lumini A 2008 Ensemble of neural networks for automated cell phenotype image classification. In: Biomedical image analysis and machine learning technologies: applications and techniques [chapter in vision 2008], pp. 234–259Google Scholar
  15. 15.
    Nanni L and Lumini A 2007 Region Boost learning for 2D + 3D based face recognition. Pattern Recogn. Lett. 28(15): 2063–2070CrossRefGoogle Scholar
  16. 16.
    Ahonen T, Hadid A and Pietikainen M 2006 Face description with local binary patterns: application to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 28(12): 2037–2041CrossRefzbMATHGoogle Scholar
  17. 17.
    Guo Z, Zhang L and Zhang D 2010 Rotation invariant texture classification using LBP variance with global matching. Pattern Recogn. 43: 706–716CrossRefzbMATHGoogle Scholar
  18. 18.
    Nanni L and Lumini A 2008 Local binary patterns for a hybrid fingerprint matcher. Pattern Recogn. 11: 3461–3466CrossRefzbMATHGoogle Scholar
  19. 19.
    Shang X and Veldhuis R 2007 Local absolute binary patterns as image preprocessing for grip-pattern recognition in smart gun. In: Proceedings of the First IEEE International Conference on Biometrics: Theory, Applications, and Systems, pp. 1–6Google Scholar
  20. 20.
    Guo Y, Zhao G and Pietikäinen M 2011 Texture classification using a linear configuration model based descriptor. In: Proceedings of the British Machine Vision Conference (BMVC 2011), Dundee, UK, pp. 119.1–119.10Google Scholar
  21. 21.
    Murala S, Maheshwari R P and Balasubramanian R 2012 Directional binary wavelet patterns for biomedical image indexing and retrieval. J. Med. Syst. 36(5): 2865–2879CrossRefGoogle Scholar
  22. 22.
    Murala S, Maheshwari R P and Balasubramanian R 2012 Directional local extrema patterns: a new descriptor for content based image retrieval. Int. J. Multimedia Inf. Retr. 1(3): 191–203CrossRefzbMATHGoogle Scholar
  23. 23.
    Murala S, Maheshwari R P and Balasubramanian R 2012 Local maximum edge binary patterns: a new descriptor for image retrieval and object tracking. Sig. Process. 92: 1467–1479CrossRefzbMATHGoogle Scholar
  24. 24.
    Murala S, Maheshwari R P and Balasubramanian R 2012 Local tetra patterns: new feature descriptor for content based image retrieval. IEEE Trans. Imag. Process. 21(5): 2874–2886MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Murala S and Jonathan W Q 2013 Local ternary co-occurrence patterns: a new feature descriptor for MRI and CT image retrieval. Neurocomputing 119(7): 399–412CrossRefGoogle Scholar
  26. 26.
    Murala S and Jonathan W Q 2013 Peak valley edge patterns: a new descriptor for biomedical image indexing and retrieval. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 444–449Google Scholar
  27. 27.
    Roweis S and Saul L 2000 Nonlinear dimensionality reduction by locally linear embedding. Science 290: 2323–2326CrossRefGoogle Scholar
  28. 28.
    Ojansivu V and Heikkila J 2008 Blur insensitive texture classification using local phase quantization. In: Proceedings of Image and Signal Processing (ICISP), Lecture Notes in Computer Science 5099, pp. 236–243Google Scholar
  29. 29.
    Nanni L, Lumini A and Brahnam S 2010 Local binary patterns variants as texture descriptors for medical image analysis. Artif. Intell. Med. 49(2): 117–125CrossRefGoogle Scholar
  30. 30.
    Zhang L, Zhou Z and Li H 2012 Binary Gabor pattern: an efficient and robust descriptor for texture classification. In: Proceedings of the 19th IEEE International Conference on Image Processing (ICIP), pp. 81–84Google Scholar
  31. 31.
    Kannala J and Rahtu E 2012 BSIF: binarized statistical image features. In: Proceedings of the 21st International Conference on Pattern Recognition (ICPR), pp. 1363–1366Google Scholar
  32. 32.
    Chen J, Shan S, He C, Zhao G, Pietikäinen M, Chen X and Gao W 2009 WLD: a robust local image descriptor. IEEE Trans. Pattern Anal. Mach. Intell. 32(9): 1705–1720CrossRefGoogle Scholar
  33. 33.
    Lowe D 2004 Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2): 91–110CrossRefGoogle Scholar
  34. 34.
    Haralick R M, Shanmugam K and Dinstein I 1973 Textural features for image classification. IEEE Trans. Syst. Man Cybern. 3: 610–621CrossRefGoogle Scholar
  35. 35.
    Kascic E 2011 NBIA – National Cancer Imaging Archive NCIA (version 4.0): the NCI’s repository for DICOM-based images (https://cabig.nci.nih.gov/tools/NCIA)
  36. 36.
    NEMA-CT image database 2012 [online] Available: ftp://medical.nema.org/medical/Dicom/Multiframe/
  37. 37.
    Lampert T LIDC 2 Image Toolbox (Matlab) [online]. Available: https://wiki.cancerimagingarchive.net/display/Public/LungImageDatabaseConsortium

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Department of Computer Science and Engineering, Chandigarh Engineering College (CEC), LandranPunjab Technical UniversityMohaliIndia
  2. 2.Department of Computer EngineeringPunjabi UniversityPatialaIndia
  3. 3.Department of Computer Science and Engineering, University Institute of Engineering and TechnologyPanjab UniversityChandigarhIndia

Personalised recommendations