Advertisement

Sādhanā

, Volume 42, Issue 5, pp 713–728 | Cite as

Continuum limit of discrete Sommerfeld problems on square lattice

  • BASANT LAL SHARMAEmail author
Article

Abstract

A low-frequency approximation of the discrete Sommerfeld diffraction problems, involving the scattering of a time harmonic lattice wave incident on square lattice by a discrete Dirichlet or a discrete Neumann half-plane, is investigated. It is established that the exact solution of the discrete model converges to the solution of the continuum model, i.e., the continuous Sommerfeld problem, in the discrete Sobolev space defined by Hackbusch. A proof of convergence has been provided for both types of boundary conditions when the imaginary part of incident wavenumber is positive.

Keywords

Sommerfeld half-plane crack rigid ribbon continuum limit Wiener–Hopf Toeplitz operator 

Notes

Acknowledgements

This work was partially supported by the Grant IITK/ME/20080334 and Project IITK/ME/20090027. The author thanks Anand and Munshi for suggestions. The author thanks an anonymous reviewer of [23] for a comment that prompted the author to prepare a rigorous proof of continuum limit, which had been deferred during the preparation of the papers [16, 17, 22, 23]. The author thanks the anonymous reviewers for several constructive comments and suggestions.

References

  1. 1.
    Sommerfeld A 1896 Mathematische theorie der diffraction. Math. Ann. 47(2–3): 317–374 doi: 10.1007/BF01447273 MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Levine H and Schwinger J 1948 On the theory of diffraction by an aperture in an infinite plane screen. I. Phys. Rev. 74: 958–974 doi: 10.1103/PhysRev.74.958 MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Levine H and Schwinger J 1949 On the theory of diffraction by an aperture in an infinite plane screen. II. Phys. Rev. 75: 1423–1432 doi: 10.1103/PhysRev.75.1423 MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Levine H and Schwinger J S 1948 On the radiation of sound from an un anged circular pipe. Phys. Rev. 73.2: 383–406CrossRefzbMATHGoogle Scholar
  5. 5.
    Milton K A and Schwinger J 2006 Electromagnetic radiation: variational methods, waveguides and accelerators. Berlin: Springer-Verlag xiv+360 ppGoogle Scholar
  6. 6.
    Schwinger J and Saxon D 1968 Discontinuities in waveguides. Notes on Lectures by Julian Schwinger. Documents on modern physics. New York: Gordon and BreachGoogle Scholar
  7. 7.
    Wiener N and Hopf E 1931. Über eine Klasse singulärer Integralgleichungen. Sitzungsber. Preuss. Akad. Wiss. Phys. Math. 32: 696–706zbMATHGoogle Scholar
  8. 8.
    Paley R E A C and Wiener N 1934 Fourier transforms in the complex domain. Providence, Rhode Island: American Mathematical SocietyzbMATHGoogle Scholar
  9. 9.
    Bouwkamp C J 1954 Diffraction theory. Rep. Prog. Phys. 17: 35–100MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Copson E T 1946 On an integral equation arising in the theory of diffraction. Q. J. Math. 17: 19–34MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Heins A E 1948 The radiation and transmission properties of a pair of semi-infinite parallel plates II”. Q. App. Math. 6: 215–220CrossRefzbMATHGoogle Scholar
  12. 12.
    Meister E and Speck F O 1989 Modern Wiener-Hopf methods in diffraction theory. In: Ordinary and partial differential equations, vol. II (Dundee, 1988). Pitman Researeh Notes in Mathematics Series, vol 216 Longman, pp. 130–171Google Scholar
  13. 13.
    Speck F O 1985 General Wiener-Hopf factorization methods. London: PitmanzbMATHGoogle Scholar
  14. 14.
    Speck F O 1986 Mixed boundary value problems of the type of Sommerfeld’s half-plane problem. Proc. R. Soc. Edinb. A 104: 261–277MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Böttcher A and Silbermann B 2006 Analysis of Toeplitz operators, 2nd ed Cambridge, UK: SpringerzbMATHGoogle Scholar
  16. 16.
    Sharma B L 2015 Diffraction of waves on square lattice by semi-infinite crack. SIAM J. Appl. Math. 75(3): 1171–1192 doi: 10.1137/140985093 MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Sharma B L 2015 Diffraction of waves on square lattice by semi-infinite rigid constraint. Wave Motion 59: 52–68 doi: 10.1016/j.wavemoti.2015.07.008 MathSciNetCrossRefGoogle Scholar
  18. 18.
    Jones D S 1952 A simplifying technique in the solution of a class of diffraction problems. Q. J. Math. 3: 189MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Jones D S 1964 The theory of electromagnetism. New York: MacmillanzbMATHGoogle Scholar
  20. 20.
    Noble B 1958 Methods based on the Wiener-Hopftechnique. London: Pergamon PressGoogle Scholar
  21. 21.
    Slepyan L I 2002 Models and phenomena in fracture mechanics. New York, Berlin, Heidelberg: SpringerCrossRefzbMATHGoogle Scholar
  22. 22.
    Sharma B L 2015 Near-tip field for diffraction on square lattice by crack. SIAM J. Appl. Math. 75(4): 1915–1940 doi: 10.1137/15M1010646 MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Sharma B L 2015 Near-tip field for diffraction on square lattice by rigid constraint. Z. Angew. Math. Phy. 66(5): 2719–2740 doi: 10.1007/s00033-015-0508-z15M1010646 MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Economou E N 1983 Green’s functions in quantum physics. second. Berlin: SpringerCrossRefGoogle Scholar
  25. 25.
    Katsura S and Inawashiro S 1971 Lattice Green’s functions for the rectangular and the square lattices at arbitrary points. J. Math. Phys. 12: 1622–1630MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Blanc X, Bris C L and Lions P-L 2002 From molecular models to continuum mechanics. Arch. Rational Mech. Ana. 164(4): 341–381MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Braides A and Gelli M 2002 Continuum limits of discrete systems without convexity hypotheses. Math. Mech. Solids 7: 41–66MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Martin P A 2006 Discrete scattering theory: Green’s function for a square lattice. Wave Motion 43: 619–629MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Hackbusch W 1981 On the regularity of difference schemes. Ar. Math. 19(1–2): 71–95MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Stevenson R 1991 Discrete Sobolev spaces and regularity of elliptic difference schemes. ESAIM: Math. Model. Num. Anal. Modél. Math. Anal. Num. 25(5): 607–640MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Achenbach J D 1973 Wave propagation in elastic solids. Amsterdam: North-Holland Publishing CompanyzbMATHGoogle Scholar
  32. 32.
    Felsen L B and Marcuvitz N 1973 Radiation and scattering of waves. Englewood Cliffs, NJ: Prentice-HallzbMATHGoogle Scholar
  33. 33.
    Maradudin A A 1958 Screw dislocations and discrete elastic theory. J. Phy. Chem. Solids 9(1): 1–20MathSciNetCrossRefGoogle Scholar
  34. 34.
    Maradudin A A et al 1971 Theory of lattice dynamics in the harmonic approximation, 2nd. New York: Academic PressGoogle Scholar
  35. 35.
    Slepyan L I 1982 Antiplane problem of a crack in a lattice. Mech. Solids 17(5): 101–114MathSciNetGoogle Scholar
  36. 36.
    Harris J G 2010 Elastic waves at high frequencies: techniques for radiation and diffraction of elastic and surface waves. Cambridge, New York: Cambridge University PressCrossRefGoogle Scholar
  37. 37.
    Abramowitz M and Stegun I A (Eds.) 1964 Handbook of mathematical functions with formulas, graphs, and mathematical tables. Washington: U.S. Goverrment Printing OfficeGoogle Scholar
  38. 38.
    Sommerfeld A 1964 Optics. Lectures on theoretical physics, vol IV. New York: Academic PresszbMATHGoogle Scholar
  39. 39.
    Gohberg I and Feldman I 1974 Convolution equations and projection methods for their solutions. Mathmatical Monosnaph, vol. 41. Providence, RI: AMSGoogle Scholar
  40. 40.
    Holm H, Maischak M and Stephan E P 1996 The hp-version of the boundary element method for Helmholtz screen problems. Computing 57: 105–134MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Stephan E P 1987 Boundary integral equations for screen problem in \({\mathbb{R}}^3\). Integr. Equat. Oper. Thr. 10: 257–263MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Stephan E P and Wendland W L 1990 A hypersingular boundary integral method for two-dimensional screen and crack problems. Arch. Rat. Mech. Anal. 112: 363–390MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Adams R A 1975 Sobolev spaces. New York-San Francisco-London: Academic PresszbMATHGoogle Scholar
  44. 44.
    Lions J L and Magenes E 1972 Non-homogeneous boundary value problems and applications. vol. 1. Berlin, Heidelberg New York: SpringerCrossRefzbMATHGoogle Scholar
  45. 45.
    Greenspan D and Werner P 1966 A numerical method for the exterior Dirichlet problem for the reduced wave equation Arch. Rational Mech. Anal. 23(4): 288–316MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Collatz L 1960 The numerical treatment of differential equations, 3rd ed. Berlin: SpringerCrossRefzbMATHGoogle Scholar
  47. 47.
    Shaban W and Vainberg B 2001 Radiation conditions for the difference Schrödinger operators. Appl. Anal. 80: 525–556MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Zemla A 1995 On the fundamental solutions for the difference Helmholtz operator. SIAM J. Num. Anal. 32(2): 560–570MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Krein M G 1962 Integral equations on a half-line with kernel depending upon the difference of the arguments. Am. Math. Soc. Transl. Ser. 2(22): 163–288zbMATHGoogle Scholar
  50. 50.
    Calderón A, Spitzer F and Widom H 1959 Inversion of Toeplitz matrices. Illinois J. Math. 3: 490–498MathSciNetzbMATHGoogle Scholar
  51. 51.
    Lax P D and Milgram A N 1954 Parabolic equations. In: Contributions to the theory of partial differential equations. Annals of Mathematics Studies, no. 33. Princeton, NJ: Princeton University Press, pp. 167–190Google Scholar
  52. 52.
    Thau S A and Pao Y-H 1960 Diffraction of horizontal shear waves by a parabolic cylinder and dynamic stress concentrations. J. Appl. Mech. Trans. ASME Ser. E 33(4): 785–792CrossRefGoogle Scholar
  53. 53.
    Eggermont P P B and Lubich C 1993 Operational quadrature methods for Wiener-Hopf integral equations. Math. Comput. 60(202): 699–718MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Banjai, L, Lubich C and Melenk J M 2011 Runge–Kutta convolution quadrature for operators arising in wave propagation. Num. Math. 119: 1–20MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Indian Academy of Sciences 2017

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringIndian Institute of Technology KanpurKanpurIndia

Personalised recommendations