Skip to main content
Log in

A review on rising bubble dynamics in viscosity-stratified fluids

  • Published:
Sādhanā Aims and scope Submit manuscript

Abstract

Systems with a bubble rising in a fluid, which has a variation of viscosity in space and time can be found in various natural phenomena and industrial applications, including food processing, oil extraction, waste processing and biochemical reactors, to name a few. A review of the aspects studied in the literature on this phenomenon, the gaps that exist and the direction for further numerical and experimental studies to address these gaps is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Blanchard D C 1962 Comments on the breakup of raindrops. J. Atmos. Sci. 19: 119–120

    Article  Google Scholar 

  2. Gal-Or B, Klinzing G E and Tavlarides L L 1969 Bubble and drop phenomena. Ind. Eng. Chem. 61(2): 21–34

    Article  Google Scholar 

  3. Villermaux E and Bossa B 2009 Single-drop fragmentation determines size distribution of raindrops. Nat. Phys. 5: 697–702

    Article  Google Scholar 

  4. Tripathi M K, Sahu K C and Govindarajan R 2015 Dynamics of an initially spherical bubble rising in quiescent liquid. Nat. Commun. 6: 6268

    Article  Google Scholar 

  5. Ghannam M T and Esmail M N 1997 Rheological properties of carboxymethyl cellulose. J. Appl. Polym. Sci. 64(2): 289–301

    Article  Google Scholar 

  6. Young N O, Goldstein J S and Block M J 1959 The motion of bubbles in a vertical temperature gradient. J. Fluid Mech. 6: 350–356

    Article  MATH  Google Scholar 

  7. Subramanian R S, Balasubramaniam R and Wozniak G 2002 Fluid mechanics of bubbles and drops. In: Monti R (Ed.), Physics of fluids in microgravity. London: Taylor and Francis, pp. 149–177

    Google Scholar 

  8. Tripathi M K, Sahu K C, Karapetsas G, Sefiane K and Matar O K 2015 Non-isothermal bubble rise: non-monotonic dependence of surface tension on temperature. J. Fluid Mech. 763: 82–108

    Article  MathSciNet  Google Scholar 

  9. Govindarajan R and Sahu K C 2014 Instabilities in viscosity-stratified flows. Ann. Rev. Fluid Mech. 46: 331–353.

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen J C and Lee Y T 1992 Effect of surface deformation on thermocapillary bubble migration. AIAA J. 30(4): 993–998.

    Article  Google Scholar 

  11. Welch S W 1998 Transient thermocapillary migration of deformable bubbles. J. Colloid Interface Sci. 208(2): 500–508

    Article  Google Scholar 

  12. Haj-Hariri H, Shi Q and Borhan A 1997 Thermocapillary motion of deformable drops at finite Reynolds and Marangoni numbers. Phys. Fluids 9(4): 845–855

    Article  Google Scholar 

  13. Zhao J F, Li Z D, Li H X and Li J 2010 Thermocapillary migration of deformable bubbles at moderate to large Marangoni number in microgravity. Microgravity Sci. Tech. 22(3): 295–303

    Article  Google Scholar 

  14. Ma C and Bothe D 2011 Direct numerical simulation of thermocapillary flow based on the volume of fluid method. Int. J. Multiphase Flow 37(9): 1045–1058

    Article  Google Scholar 

  15. Borcia R and Bestehorn M 2007 Phase-field simulations for drops and bubbles. Phys. Rev. E 75(5): 056309

    Article  Google Scholar 

  16. Chakraborty I, Biswas G and Ghoshdastidar P 2013 A coupled level-set and volume-of-fluid method for the buoyant rise of gas bubbles in liquids. Int. J. Heat Mass Transfer 58(1): 240–259

    Article  Google Scholar 

  17. Liu H, Valocchi A, Zhang Y and Kang Q 2013 Phase-field-based lattice Boltzmann finite-difference model for simulating thermocapillary flows. Phys. Rev. E 87(1): 013010

    Article  Google Scholar 

  18. Zhang L, Yang C and Mao L S 2010 Numerical simulation of a bubble rising in a shear-thinning fluids. J. Non-Newtonian Fluid Mech. 165: 555–567

    Article  MATH  Google Scholar 

  19. Terasaka K and Tsuge H 2001 Bubble formation at a nozzle submerged in viscous liquids having yield stress. Chem. Eng. Sci. 56: 3237–3245

    Article  Google Scholar 

  20. Bhaga D and Weber 1981 M E Bubbles in viscous liquids: shapes, wakes and velocities. J. Fluid Mech. 105: 61–85

  21. Premlata A R, Tripathi M K and Sahu K C 2015 Dynamics of rising bubble inside a viscosity-stratified medium. Phys. Fluids 27: 072105.

    Article  Google Scholar 

  22. Tsamopoulos J, Dimakopoulos Y, Chatzidai N, Karapetsas G and Pavlidis M 2008 Steady bubble rise and deformation in Newtonian and viscoplastic fluids and conditions for bubble entrapment. J. Fluid Mech. 601: 123–164

    Article  MathSciNet  MATH  Google Scholar 

  23. Taylor T and Acrivos A 1964 On the deformation and drag of a falling viscous drop at low Reynolds number. J. Fluid Mech. 18: 466–476

    Article  MathSciNet  MATH  Google Scholar 

  24. Antal S, Lahey Jr R and Flaherty J 1991 Analysis of phase distribution in fully developed laminar bubbly two-phase flow. Int. J. Multiphase Flow 17: 635–652

    Article  MATH  Google Scholar 

  25. Sussman M and Puckett E G 2000 A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows. J. Comput. Phys 162: 301–337

    Article  MathSciNet  MATH  Google Scholar 

  26. Hua J, Stene J F and Lin P 2008 Numerical simulation of 3D bubbles rising in viscous liquids using a front tracking method. J. Comput. Phys 227: 3358–3382

    Article  MathSciNet  MATH  Google Scholar 

  27. Baltussen M, Kuipers J and Deen N 2014 A critical comparison of surface tension models for the volume of fluid method. Chem. Eng. Sci. 109: 65–74

    Article  Google Scholar 

  28. Han J and Tryggvason G 1999 Secondary breakup of axisymmetric liquid drops. I. acceleration by a constant body force. Phys. Fluids 11: 3650–3667

    Article  MATH  Google Scholar 

  29. Tripathi M K, Sahu K C and Govindarajan R 2014 Why a falling drop does not in general behave like a rising bubble. Sci. Rep. 4: 4771

    Article  Google Scholar 

  30. Hadamard J 1911 Mouvement permanent lent dune sphere liquide et visqueuse dans un liquide visqueux. CR Acad. Sci 152: 1735–1738

    MATH  Google Scholar 

  31. De Vries A, Biesheuvel A and Van Wijngaarden L 2002 Notes on the path and wake of a gas bubble rising in pure water. Int. J. Multiphase Flow 28: 18231835

    Article  MATH  Google Scholar 

  32. Shew W L and Pinton J 2006 Dynamical model of bubble path instability. Phys. Rev. Lett. 97: 144508

    Article  Google Scholar 

  33. Manga M and Stone H 1995 A Low Reynolds number motion of bubbles, drops and rigid spheres through fluid–fluid interfaces. J. Fluid Mech. 287: 279–298

    Article  Google Scholar 

  34. Bonhomme R, Magnaudet J, Duval F and Piar B 2012 Inertial dynamics of air bubbles crossing a horizontal fluid–fluid interface. J. Fluid Mech. 707: 405–443

    Article  MATH  Google Scholar 

  35. Kemiha M, Olmos E, Fei W, Poncin S and Li H Z 1991 Passage of a gas bubble through a liquid–liquid interface. Ind. Eng. Chem. Res. 46: 6099–6104

    Article  Google Scholar 

  36. Subramanian R S 1981 Slow migration of a gas bubble in a thermal gradient. AIChE J. 27(4): 646654

    Article  Google Scholar 

  37. Subramanian R S 1983 Thermocapillary migration of bubbles and droplets. Adv. Space Res. 3(5): 145–153

    Article  Google Scholar 

  38. Balasubramaniam R and Subramaniam R S 1996 Thermocapillary bubble migrationthermal boundary layers for large Marangoni numbers. Int. J. Multiphase Flow 22(3): 593–612

    Article  MATH  Google Scholar 

  39. Balasubramaniam R and Subramanian R S 2000 The migration of a drop in a uniform temperature gradient at large Marangoni numbers. Phys. Fluids 12(4): 733–743

    Article  MATH  Google Scholar 

  40. Crespo A, Migoya E and Manuel F 1998 Thermocapillary migration of bubbles at large Reynolds numbers. Int. J. Multiphase Flow 24(4): 685–692

    Article  MATH  Google Scholar 

  41. Merritt R M, Morton D S and Subramanian R S 1993 Flow structures in bubble migration under the combined action of buoyancy and thermocapillarity. J. Colloid Interf. Sci. 155(1): 200–209

    Article  Google Scholar 

  42. Zhang L, Subramanian R S and Balasubramaniam R 2001 Motion of a drop in a vertical temperature gradient at small marangoni—number the critical role of inertia. J. Fluid Mech. 448: 197–211

    Article  MATH  Google Scholar 

  43. Vochten R and Petre G 1973 Study of heat of reversible adsorption at air–solution interface II experimental determination of heat of reversible adsorption of some alcohols. J. Colloid Interface Sci. 42: 320–327

    Article  Google Scholar 

  44. Petre G and Azouni M A 1984 Experimental evidence for the minimum of surface tension with temperature at aqueous alcohol solution air interfaces. J. Colloid Interface Sci. 98: 261–263

    Article  Google Scholar 

  45. Petre G and Legros J C 1986 Thermocapillary movements under at a minimum of surface tension. Naturwissenschaften 73: 360–362

    Article  Google Scholar 

  46. Savino R, Cecere A and Paola R D 2009 Surface tension driven flow in wickless heat pipes with self-rewetting fluids. Int. J. Heat Fluid Flow 30: 380–388

    Article  Google Scholar 

  47. Savino R, Cecere A, Vaerenbergh S V, Abe Y, Pizzirusso G, Tzevelecos W, Mojahed M and Galand Q 2013 Some experimental progresses in the study of the self-rewetting fluids for the selene experiment to be carried in the thermal platform 1 hardware. Acta Astronautica 89: 179–188

    Article  Google Scholar 

  48. Abe Y, Iwasaki A and Tanaka K 2004 Microgravity experiments on phase change of self-rewetting fluids. Ann. N.Y. Acad. Sci. 1027: 269285

    Article  Google Scholar 

  49. Sahu K C and Matar O K 2010 Three-dimensional linear instability in pressure-driven two-layer channel flow of a Newtonian and a Herschel-Bulkley fluid. Phys. Fluids 22: 112103

    Article  Google Scholar 

  50. Bird R B, Dai G C and Yarusso B J 1982 The rheology and flow of viscoplastic materials. Rev. Chem. Eng. 1: 1–70

    Article  Google Scholar 

  51. Barnes H A 1999 The yield stress – a review – everything flows? J. Non-Newtonian Fluid Mech. 81: 133–178

    Article  MATH  Google Scholar 

  52. Bingham E C 1922 Fluidity and plasticity. New York: McGraw-Hill

    Google Scholar 

  53. Herschel W H and Bulkley P 1926 Konsistenzmessungen von gummi-benzollsungen. Kolloid Z. 39: 291–300

    Article  Google Scholar 

  54. Frigaard I and Nouar C 2005 On the usage of viscosity regularisation methods for visco-plastic fluid flow computation. J. Non-Newtonian Fluid Mech. 127: 1–26

    Article  MATH  Google Scholar 

  55. Swain P A P, Karapetsas G, Matar O K and Sahu K C 2015 Numerical simulation of pressure-driven displacement of a viscoplastic material by a Newtonian fluid using the lattice Boltzmann method. Eur. J. Mech. B-Fluid 49: 197–207

    Article  MathSciNet  Google Scholar 

  56. Tripathi M K, Sahu K C, Karapetsas G and Matar O K 2015 Bubble rise dynamics in a viscoplastic material. J. Non-Newtonian Fluid Mech. 222: 217–226

    Article  MathSciNet  Google Scholar 

  57. Astarita G and Apuzzo G 1965 Motion of gas bubbles in non-Newtonian liquids. AIChE J. 11(5): 815820

    Article  Google Scholar 

  58. Dubash N and Frigaard I 2007 Propagation and stopping of air bubbles in carbopol solutions. J. Non-Newtonian Fluid Mech. 142: 123–134

    Article  MATH  Google Scholar 

  59. Bhavaraju S M, Mashelkar R A and Blanch H W 1978 Bubble motion and mass transfer in non-Newtonian fluids: Part I. single bubble in power law and bingham fluids. AIChE J. 24: 1063–1070

    Article  Google Scholar 

  60. Papanastasiou T C 1987 Flows of materials with yield. J. Rheol. 31: 385–404

    Article  MATH  Google Scholar 

  61. Dimakopoulos Y, Pavlidis M and Tsamopoulos J 2013 Steady bubble rise in Herschel–Bulkley fluids and comparison of predictions via the augmented Lagrangian method with those via the Papanastasiou model. J. Non-Newtonian Fluid Mech. 200: 34–51

    Article  Google Scholar 

  62. Potapov A, Spivak R,Lavrenteva O M and Nir A 2006 Motion and deformation of drops in Bingham fluid. Ind. Eng. Chem. Res. 45(21): 6985–6995

    Article  Google Scholar 

  63. Singh J P and Denn M M 2008 Interacting two-dimensional bubbles and droplets in a yield-stress fluid. Phy. Fluids 20: 040901

    Article  MATH  Google Scholar 

  64. Kulkarni A A and Joshi J B 2005 Bubble formation and bubble rise velocity in gas-liquid system: a review. Ind. Eng. Chem. Res. 44: 5874–5931

    Google Scholar 

  65. Kishore N, Chhabra R P and Eswaran V 2007 Drag on a single fluid sphere translating in power-law liquids at moderate Reynolds numbers. Chem. Eng. Sci. 62: 2422–2434

    Article  Google Scholar 

  66. Chhabra R S 1993 Bubbles drops and particles in non-Newtonian fluids. Boca Raton. CRC Press

    Google Scholar 

  67. Chhabra R P 2006 Bubbles, drops, and particles in non-Newtonian fluids. CRC Press

  68. Ohta M, Iwasaki E, Obata E and Yoshida Y 2003 A numerical study of the motion of a spherical drop rising in shear-thinning fluid system. J. Non-Newtonian Fluid Mech. 113: 95–111

    Article  MATH  Google Scholar 

  69. Ohta M, Iwasaki E, Obata E and Yoshida Y 2005 Dynamics processes in a deformed drop rising through shear-thinning fluids. J. Non-Newtonian Fluid Mech. 132: 100–117

    Article  Google Scholar 

  70. Pillapakkam S B and Singh P 2001 A level-set method for computing solutions to viscoelastic two-phase flow. J. Comput. Phys 174: 552–578

    Article  MATH  Google Scholar 

  71. Wagner A J, Giraud L and Scott C E 2000 Simulation of a cusped bubble rising in a viscoelastic fluid with a new numerical method. Comput. Phys. Commun. 129: 227–232

    Article  MATH  Google Scholar 

  72. Vlez-Cordero J R, Smano D, Yue P, Feng J J and Zenit 2011 R Hydrodynamic interaction between a pair of bubbles ascending in shear-thinning inelastic fluids. J. Non-Newtonian Fluid Mech. 166(1): 118–132

  73. Islam M T, Ganesan P and Cheng Ji 2015 A pair of bubbles rising dynamics in a xanthan gum solution: a CFD study. RSC Adv. 5: 7819–7831.

    Article  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges Prof Karri Badarinath of IIT Hyderabad for reading the manuscript and providing valuable suggestions. He also thank his PhD student A R Premlata for her help in re-plotting some of the results presented in this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirti Chandra Sahu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, K.C. A review on rising bubble dynamics in viscosity-stratified fluids. Sādhanā 42, 575–583 (2017). https://doi.org/10.1007/s12046-017-0634-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12046-017-0634-8

Keywords

Navigation