Skip to main content

Advertisement

Log in

Numerical simulation of thermal fracture in functionally graded materials using element-free Galerkin method

  • Published:
Sādhanā Aims and scope Submit manuscript

Abstract

In the present work, element-free Galerkin method (EFGM) has been extended and implemented to simulate thermal fracture in functionally graded materials. The thermo-elastic fracture problem is decoupled into two separate parts. Initially, the temperature distribution over the domain is obtained by solving the heat transfer problem. The temperature field so obtained is then employed as input for the mechanical problem to determine the displacement and stress fields. The crack surfaces are modelled as non-insulated boundaries; hence the temperature field remains undisturbed by the presence of crack. A modified conservative M-integral technique has been used in order to extract the stress intensity factors for the simulated problems. The present analysis shows that the results obtained by EFGM are in good agreement with those available in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22

Similar content being viewed by others

References

  1. Koizumi M 1997 FGM activities in Japan. Compos. Part B: Eng. 8368: 1–4

    Article  Google Scholar 

  2. Barthel K and Rambert S 1999 Thermal spraying and performance of graded composite cathodes as SOFC-component. Mater. Sci. Forum 308: 800–805

    Article  Google Scholar 

  3. Hart N T, Brandon N P, Day M J and Shemilt J E 2001 Functionally graded cathodes for solid oxide fuel cells. J. Mater. Sci. 36(5): 1077–1085

    Article  Google Scholar 

  4. Liu Y, Compson C and Liu M 2004 Nanostructured and functionally graded cathodes for intermediate temperature solid oxide fuel cells. J. Power Sources 138(1): 194–198

    Article  Google Scholar 

  5. Coomar N and Kadoli R 2010 Comparative analysis of steady state heat transfer in a TBC. Sadhana – Acad. Proc. Eng. Sci. 35(1): 1–17

    MathSciNet  MATH  Google Scholar 

  6. Gibson R E 1967 Some results concerning displacements and stresses in a non-homogeneous elastic half-space. Geotechnique 17(1): 58–67

    Article  Google Scholar 

  7. Atkinson C and List R D 1978 Steady state crack propagation into media with spatially varying elastic properties. Int. J. Eng. Sci. 16(10): 717–730

    Article  MATH  Google Scholar 

  8. Dhaliwal R S and Singh B M 1978 On the theory of elssticity of a nonhomogeneous medium. J. Elast. 8(2): 211–219

    Article  MATH  Google Scholar 

  9. Delale F and Erdogan F 1983 The crack problem for a nonhomogeneous plane. J. Appl. Mech. 50(3): 609–614

    Article  MATH  Google Scholar 

  10. Jin Z H and Noda N 1993 An internal crack parallel to the boundary of a nonhomogeneous half plane under thermal loading. Int. J. Eng. Sci. 31(5): 793–806

    Article  MATH  Google Scholar 

  11. Erdogan F 1995 Fracture mechanics of functionally graded materials. Compos. Eng. 5(7): 753–770

    Article  Google Scholar 

  12. Gu P and Asaro R J 1997 Cracks in functionally graded materials. Int. J. Solids Struct. 34(1): 1–17

    Article  MATH  Google Scholar 

  13. Gu P, Dao M and Asaro R J 1999 A simplified method for calculating the crack-tip field of functionally graded materials using the domain integral. J. Appl. Mech. 66(1): 101–108

    Article  Google Scholar 

  14. Chen J, Wu L and Du S 2000 A modified J integral for functionally graded materials. Mech. Res. Commun. 27(3): 301–306

    Article  MATH  Google Scholar 

  15. Marur P R and Tippur H V 2000 Numerical analysis of crack-tip fields in functionally graded materials with a crack normal to the elastic gradient. Int. J. Solids Struct. 37(38): 5353–5370

    Article  MATH  Google Scholar 

  16. Kim J and Paulino G H 2002 Finite element evaluation of mixed mode stress intensity factors in functionally graded materials. Int. J. Numer. Methods Eng. 53(8): 1903–1935

    Article  MATH  Google Scholar 

  17. Chi S and Chung Y 2003 Cracking in coating–substrate composites with multi-layered and FGM coatings. Eng. Fract. Mech. 70: 1227–1243

    Article  Google Scholar 

  18. Rangaraj S and Kokini K 2003 Estimating the fracture resistance of functionally graded thermal barrier coatings from thermal shock tests. Surf. Coat. Technol. 173(3): 201–212

    Article  MATH  Google Scholar 

  19. Çallio˘glu H 2011 Stress analysis in a functionally graded disc under mechanical loads and a steady state temperature. Sadhana – Acad. Proc. Eng. Sci. 36(February): 53–64

  20. Saucedo-mora L, Sláme K, Thandavamoorthy U and Marrow T J 2015 Multi-scale modeling of damage development in a thermal barrier coating. Surf. Coat. Technol. 276: 399–407

    Article  Google Scholar 

  21. Afsar A M and Song J I 2010 Effect of FGM coating thickness on apparent fracture toughness of a thick-walled cylinder. Eng. Fract. Mech. 77(14): 2919–2926

    Article  Google Scholar 

  22. Rao B N and Rahman S 2003 Mesh-free analysis of cracks in isotropic functionally graded materials. Eng. Fract. Mech. 70(1): 1–27

    Article  Google Scholar 

  23. Dai K Y, Liu G R, Han X and Lim K M 2005 Thermomechanical analysis of functionally graded material (FGM) plates using element-free Galerkin method. Comput. Struct. 83(17–18): 1487–1502

    Article  Google Scholar 

  24. Dolbow J E and Gosz M 2002 On the computation of mixed-mode stress intensity factors in functionally graded materials. Int. J. Solids Struct. 39(9): 2557–2574

    Article  MATH  Google Scholar 

  25. Natarajan S, Baiz P M, Bordas S, Rabczuk T and Kerfriden P 2011 Natural frequencies of cracked functionally graded material plates by the extended finite element method. Compos. Struct. 93(11): 3082–3092

    Article  Google Scholar 

  26. Bayesteh H and Mohammadi S 2013 XFEM fracture analysis of orthotropic functionally graded materials. Compos. Part B Eng. 44(1): 8–25

    Article  Google Scholar 

  27. Belytschko T, Lu Y Y and Gu L 1994 Element free Galerkin methods. Int. J. Numer. Methods Eng. 37(2): 229–256

    Article  MathSciNet  MATH  Google Scholar 

  28. Belytschko T and Fleming M 1999 Smoothing, enrichment and contact in the element-free Galerkin method. Comput. Struct. 71(2): 173–195

    Article  MathSciNet  Google Scholar 

  29. Belytschko T, Krongauz Y, Fleming M, Organ D and Snm Liu W K 1996 Smoothing and accelerated computations in the element free Galerkin method. J. Comput. Appl. Math. 74(1–2): 111–126

    Article  MathSciNet  MATH  Google Scholar 

  30. Sladek J and Sladek V 1997 Evaluation of T-stresses and stress intensity factors in stationary thermoelasticity by the coservation integral method. Int. J. Fract. 86(3): 199–219

    Article  Google Scholar 

  31. Paulino G H and Kim J H 2005 Consistent formulations of the interaction integral method for fracture of functionally graded materials. J. Appl. Mech. 72(3): 351–364

    Article  MATH  Google Scholar 

  32. Wilson W K and Yu I W 1979 The use of the J-integral in thermal stress crack problems. Int. J. Fract. 15(4): 377–387

    Google Scholar 

  33. Rice J R 1968 A path independent integral and the approximate analysis of strain concentration by notches and cracks. J. Appl. Mech. 35(2): 379

    Article  Google Scholar 

  34. Amit K C and Kim J H 2008 Interaction integrals for thermal fracture of functionally graded materials. Eng. Fract. Mech. 75(8): 2542–2565

    Article  Google Scholar 

  35. Erdogan F and Wu B H 1997 The surface crack problem for a plate with functionally graded properties. J. Appl. Mech. 64(3): 449–456

    Article  MATH  Google Scholar 

  36. Chen J, Wu L Z and Du S Y 2000 Element-free Galerkin methods for fracture of functionally-graded materials. Key Eng. Mater. 183: 487–492

    Article  Google Scholar 

  37. Duflot M 2008 The extended finite element method in thermoelastic fracture mechanics. Int. J. Numer. Methods Eng. 74(5): 827–847

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sahil Garg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garg, S., Pant, M. Numerical simulation of thermal fracture in functionally graded materials using element-free Galerkin method. Sādhanā 42, 417–431 (2017). https://doi.org/10.1007/s12046-017-0612-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12046-017-0612-1

Keywords

Navigation