Skip to main content
Log in

Post-buckling behaviour of carbon-nanotube-reinforced nanocomposite plate

  • Published:
Sādhanā Aims and scope Submit manuscript

Abstract

The aim of the present paper is to investigate the buckling and post-buckling behaviour of nanocomposite plate having randomly oriented carbon nanotubes (CNTs) reinforced in magnesium (Mg) under uni-axial compression. The effect of non-bonded interaction at the interface between CNT and matrix is considered through a cohesive zone model, used to predict the elastic property of the interphase, while evaluating the elastic properties of the nanocomposite using a representative volume element. A special purpose program based on finite-element formulation is developed to study the buckling and post-buckling behaviour of nanocomposite plate. The formulation is based on first-order shear deformation theory in conjunction with geometrical non-linearity as per von Karman’s assumptions. A parametric study is conducted to investigate the effects of interphase between CNT and matrix, short-CNT and long-CNT reinforcements and boundary conditions on buckling and post-buckling response of nanocomposite plate. It is found that imperfect bonding between CNT and Mg results in the loss of buckling and post-buckling strength, as compared with perfect bonding, of CNT–Mg nanocomposite plate. It is also concluded that buckling and post-buckling strength is higher for long-CNT-reinforced nanocomposite plate than that of short-CNT reinforcement, irrespective of bonding between CNT and matrix material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Esawi A M K and Farag M M 2007 Carbon nanotube reinforced composites: potential and current challenges. Mater. Des. 28: 2394–2401

    Article  Google Scholar 

  2. Iijima S 1991 Helical microtubules of graphitic carbon. Nature 354: 56–58

    Article  Google Scholar 

  3. Salvetat J P, Bonard J M, Thomson N H, et al 1999 Mechanical properties of carbon nanotubes. Appl. Phys. A Mater. Sci. Process. 69: 255–260

    Article  Google Scholar 

  4. Fiedler B, Gojny F H, Wichmann M H G, et al 2006 Fundamental aspects of nano-reinforced composites. Compos. Sci. Technol. 66: 3115–3125

    Article  Google Scholar 

  5. Esawi A M K, Morsi K, Sayed A, et al 2010 Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites. Compos. Sci. Technol. 70: 2237–2241

    Article  Google Scholar 

  6. Bakshi S R and Agarwal A 2010 An analysis of the factors affecting strengthening in carbon nanotube reinforced aluminum composites. Carbon 49: 533–544

    Article  Google Scholar 

  7. Yang M, Koutsos V and Zaiser M 2005 Interactions between polymers and carbon nanotubes: a molecular dynamics study. J. Phys. Chem. B 109: 10009–10014

    Article  Google Scholar 

  8. Zhang Y, Zhuang X, Muthu J, et al 2014 Load transfer of graphene/carbon nanotube/polyethylene hybrid nanocomposite by molecular dynamics simulation. Composites Part B 63: 27–33

    Article  Google Scholar 

  9. Choi J, Shin H and Cho M 2016 A multiscale mechanical model for the effective interphase of SWNT/epoxy nanocomposite. Polymer 89: 159–171

    Article  Google Scholar 

  10. Joshi P and Upadhyay S H 2014a Effect of interphase on elastic behavior of multiwalled carbon nanotube reinforced composite. Comput. Mater. Sci. 87: 267–273

    Article  Google Scholar 

  11. Liu Y J and Chen X L 2003a Evaluations of the effective material properties of carbon nanotube-based composites using a nanoscale representative volume element. Mech. Mater. 35: 69–81

    Article  Google Scholar 

  12. Liu Y J and Chen X L 2003b Continuum models of carbon nanotube-based composites using the boundary element method. Electron. J. Bound. Elem. 1: 316–335

    MathSciNet  Google Scholar 

  13. Joshi U A, Sharma S C and Harsha S P 2011 Effect of waviness on the mechanical properties of carbon nanotube based composites. Phys. E. Low-dim. Syst. Nanostruct. 43:1453–1460

    Article  Google Scholar 

  14. Shokrieh M M and Rafiee R 2010a On the tensile behavior of an embedded carbon nanotube in polymer matrix with non-bonded interphase region. Compos. Struct. 92: 647–652

    Article  Google Scholar 

  15. Joshi P and Upadhyay S H 2014b Evaluation of elastic properties of multi-walled carbon nanotube reinforced composite. Comput. Mater. Sci. 81: 332–338

    Article  Google Scholar 

  16. Tsai J L, Tzeng S H and Chiu Y T 2010 Characterizing elastic properties of carbon nanotubes/polyimide nanocomposites using multi-scale simulation. Composites Part B 41: 106–115

    Article  Google Scholar 

  17. Herasati S, Zhang L C and Ruan H H 2014 A new method for characterizing the interphase regions of carbon nanotube composites. Int. J. Solids Struct. 51: 1781–1791

    Article  Google Scholar 

  18. Shokrieh M M and Rafiee R 2010b Prediction of mechanical properties of an embedded carbon nanotube in polymer matrix based on developing an equivalent long fiber. Mech. Res. Commun. 37: 235–240

    Article  Google Scholar 

  19. Rafiee R and Pourazizi R 2015 Influence of CNT functionalization on the interphase region between CNT and polymer. Comput. Mater. Sci. 96: 573–578

    Article  Google Scholar 

  20. Odegard G M, Clancy T C and Gates T S 2005 Modeling of the mechanical properties of nanoparticle/polymer composites. Polymer 46: 553–562

    Article  Google Scholar 

  21. Jiang L Y, Huang Y, Jiang H, et al 2006 A cohesive law for carbon nanotube/polymer interfaces based on the van der Waals force. J. Mech. Phys. Solids 54: 2436–2452

    Article  MATH  Google Scholar 

  22. Tan H, Jiang L Y, Huang Y, et al 2007 The effect of van der Waals-based interface cohesive law on carbon nanotube-reinforced composite materials. Compos. Sci. Technol. 67: 2941–2946

    Article  Google Scholar 

  23. Zhao J, Jiang J W, Jia Y, et al 2013 A theoretical analysis of cohesive energy between carbon nanotubes, graphene and substrates. Carbon 57: 108–119

    Article  Google Scholar 

  24. Zhang Y, Zhao J, Jia Y, et al 2013 An analytical solution on interface debonding for large diameter carbon nanotube-reinforced composite with functionally graded variation interphase. Compos. Struct. 104: 261–269

    Article  Google Scholar 

  25. Arani A G, Maghamikia S, Mohammadimehr M and Arefmanesh A 2011 Buckling analysis of laminated composite rectangular plates reinforced by SWCNTs using analytical and finite element methods. J. Mech. Sci. Technol. 25: 809–820

    Article  Google Scholar 

  26. Jafari Mehrabadi S, Sobhani Aragh B, Khoshkhahesh V, Taherpour A 2012 Mechanical buckling of nanocomposite rectangular plate reinforced by aligned and straight singlewalled carbon nanotubes. Compos Part B Eng 43: 2031–2040

    Article  Google Scholar 

  27. Lei Z X, Liew K M, Yu J L 2013 Buckling analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method. Compos Struct 98: 160–168

    Article  MATH  Google Scholar 

  28. Shen H S and Zhang C L 2010 Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite plates. Mater. Des. 31: 3403–3411

    Article  Google Scholar 

  29. Shen H S and Zhu Z H 2012 Postbuckling of sandwich plates with nanotube-reinforced composite face sheets resting on elastic foundations. Eur. J. Mech. A/Solids 35: 10–21

    Article  MathSciNet  MATH  Google Scholar 

  30. Boda D and Henderson D 2008 The effects of deviations from Lorentz–Berthelot rules on the properties of a simple mixture. Mol. Phys. Int. J. Interface Between Chem. Phys. 106: 2367–2370

    Google Scholar 

  31. White A 2000 Intermolecular potentials of mixed systems: testing the Lorentz–Berthelot mixing rules with ab initio calculations. DSTO-TN-0302

  32. Sears A and Batra R C 2004 Macroscopic properties of carbon nanotubes from molecular-mechanics simulations. Phys. Rev. B 69: 235406

    Article  Google Scholar 

  33. Sun C T, Vaidya R S 1996 Prediction of composite properties from a representative volume element. Compos Sci Technol 56: 171–179

    Article  Google Scholar 

  34. Tsai S W and Pagano N J 1968 Invariant properties of composite materials. In: Composite Materials Workshop Proceedings. Technomic Publishing Co.

    Google Scholar 

  35. Kunanopparat T, Menut P, Morel M H and Guilbert S 2008 Plasticized wheat gluten reinforcement with natural fibers: effect of thermal treatment on the fiber/matrix adhesion. Compos. Part A Appl. Sci. Manuf. 39: 1787–1792

    Article  Google Scholar 

  36. Stern T, Teishev A and Marom G 1997 Composites of polyethylene reinforced with chopped polyethylene fibers: effect of transcrystalline interphase. Compos. Sci. Technol. 57: 1009–1015

    Article  Google Scholar 

  37. Joshi U A, Joshi P, Harsha S P and Sharma S C 2010 Evaluation of the mechanical properties of CNT based composites using hexagonal RVE. J. Nanotechnol. Eng. Med. 1: 1–7

    Google Scholar 

  38. Kumar P and Srinivas J 2014 Numerical evaluation of effective elastic properties of CNT-reinforced polymers for interphase effects. Comput. Mater. Sci. 88: 139–144

    Article  Google Scholar 

  39. Tucker C L and Liang E 1999 Stiffness predictions for unidirectional short-fiber composites: review and evaluation. Compos. Sci. Technol. 59: 655–671

    Article  Google Scholar 

  40. Hu Z, Arefin M R H, Yan X and Fan Q H 2014 Mechanical property characterization of carbon nanotube modified polymeric nanocomposites by computer modeling. Compos. Part B Eng. 56: 100–108

    Article  Google Scholar 

  41. Fan J 2011 Mutiscale analysis of deformation and failure of materials. John Wiley & Sons Ltd, New York.

    Google Scholar 

  42. Bentor Y 2014. http://www.chemicalelements.com/index.html. Accessed 5 Jan 2016

  43. Lu W B, Wu J, Song J, et al 2008 A cohesive law for interfaces between multi-wall carbon nanotubes and polymers due to the van der Waals interactions. Comput. Methods Appl. Mech. Eng. 197: 3261–3267

    Article  MATH  Google Scholar 

  44. Kumar D and Singh S B 2010 Effects of boundary conditions on buckling and postbuckling responses of composite laminate with various shaped cutouts. Compos. Struct. 92: 769–779

    Article  Google Scholar 

  45. Reddy J N 2004a Mechanics of laminated composite plates and shells, second ed. CRC Press, Boca Raton

    MATH  Google Scholar 

  46. Reddy J N 2004b An introduction to nonlinear finite element analysis. Oxford University Press, Oxford

    Book  MATH  Google Scholar 

  47. Sundaresan P, Singh G and Venkateswara Rao G 1996 Buckling and post-buckling analysis of moderately thick laminated rectangular plates. Comput. Struct. 61: 79–86

    Article  MATH  Google Scholar 

  48. Le-manh T and Lee J 2014 Postbuckling of laminated composite plates using NURBS-based isogeometric analysis. Compos. Struct. 109: 286–293

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ASHISH SRIVASTAVA.

Nomenclature

\( \phi \)

cohesive energy

σ

van der Waals radius

ε

bond energy at equilibrium distance

r

distance between the particles

\( \rho_{\text{C}} \)

area density of CNT

\( \rho_{m} \)

volume density of matrix material

\( h_{0} \)

equilibrium distance between the nanofiller and matrix material

E

elastic modulus

S

strain

a

side of square RVE

L

length of RVE

\( \sigma_{ij} , \varepsilon_{kl} \) and \( C_{ijkl} \)

stress, strain and stiffness tensor, respectively

\( \overline{\sigma _{ij}} \) and \( \overline{\varepsilon _{kl}} \)

volumetric average of stress and strain of RVE

\( C_{ijkl}^{e} \)

effective stiffness tensor

\( E_{1} \)

Young’s modulus in the axial direction of nanocomposite

\( E_{2} \)

Young’s modulus in the transverse direction of nanocomposite

V RVE

volume of represented volume element

\( v_{f} \)

volume fraction for CNT

r o and r i

external and internal radius of the CNT, respectively

t

thickness of CNT

r I

outer radius of interphase zone

b

width of square plate

h

thickness of square plate

u, v and w

displacements in x, y and z directions, respectively

θ x and θ y

rotation of normal to the undeformed mid-plane in xz- and yz-plane, respectively

\( \bar{W} \)

normalized maximum transverse deflection

N x

uni-axial edge compressive load

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

SRIVASTAVA, A., KUMAR, D. Post-buckling behaviour of carbon-nanotube-reinforced nanocomposite plate. Sādhanā 42, 129–141 (2017). https://doi.org/10.1007/s12046-016-0581-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12046-016-0581-9

Keywords

Navigation