Skip to main content
Log in

A two-step iterative method and its acceleration for outer inverses

  • Published:
Sādhanā Aims and scope Submit manuscript

Abstract

A two-step iterative method and its accelerated version for approximating outer inverse \(A^{(2)}_{T,S}\) of an arbitrary matrix A are proposed. A convergence theorem for its existence is established. The rigorous error bounds are derived. Numerical experiments involving singular square, rectangular, random matrices and a sparse matrix obtained by discretization of the Poisson’s equation are solved. Iterations count, computational time and the error bounds are used to measure the performance of our method. On comparing our results with those of other iterative methods, it is seen that significantly better performance is achieved. Thus, enhanced speed and accuracy from the computational points of view has resulted for our methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Petković M D and Petković M S 2015 Hyper-power methods for the computation of outerinverses. J. Comput. Appl. Math. 278: 110–118

    Article  MathSciNet  MATH  Google Scholar 

  2. Stanimirović P S, Chountasis S, Pappas D and Stojanović I 2013 Removal of blur in images based on least squares solutions. Math. Methods Appl. Sci. 36(17): 2280–2296

    Article  MATH  Google Scholar 

  3. Nashed M Z 1976 Generalized inverse and applications. Academic Press, NewYork.

    MATH  Google Scholar 

  4. Nashed M Z and Chen X 1993 Convergence of Newton-like methods for singular operator equations using outer inverses. Numer. Math. 66(1): 235–257

    Article  MathSciNet  MATH  Google Scholar 

  5. Mosić D 2015 Reverse order laws for the generalized Drazin inverse in Banach algebras. J. Math. Analy. Appl. 429(1): 461–477

    Article  MathSciNet  MATH  Google Scholar 

  6. Srivastava S and Gupta D K 2014 A higher order iterative method for \(A^{(2)}_{T,S}\). J. Appl. Math. Comput. 46(1):147-168

    Article  MathSciNet  MATH  Google Scholar 

  7. Kyrchei I I 2011 Determinantal representations of the Moore–Penrose inverse over the quaternion skew field and corresponding Cramer’s rules. Linear Multilinear Algebra 59(4):413–431

    Article  MathSciNet  MATH  Google Scholar 

  8. Smoktunowicz A and Wróbel I 2012 Numerical aspects of computing the Moore–Penrose inverse of full column rank matrices. BIT Numer. Math. 52(2): 503–524

    Article  MathSciNet  MATH  Google Scholar 

  9. Stanimirović P S and Soleymani F 2014 A class of numerical algorithms for computing outer inverses. J. Comput. Appl. Math. 263: 236–245

    Article  MathSciNet  MATH  Google Scholar 

  10. Soleymani F , Stanimirović P S and Haghani F K 2015 On hyperpower family of iterations for computing outer inverses possessing high efficiencies. Linear Algebra Appl. 484: 477–495

    Article  MathSciNet  MATH  Google Scholar 

  11. Sheng X and Chen G 2011 New proofs of two representations and minor of generalized inverse \(A^{(2)}_{T,S}\). Appl. Math. Comput. 217(13): 6309–6314

    MathSciNet  MATH  Google Scholar 

  12. Stanimirović P S, Pappas D, Katsikis V N and Stanimirović I P 2012 Full-rank representations of outer inverses based on the \(QR\) decomposition. Appl. Math. Comput. 218(20): 10321–10333

    MathSciNet  MATH  Google Scholar 

  13. Stanimirović I P and Tasić M B 2012 Computation of generalized inverses by using the \(LDL^{*}\) decomposition. Appl. Math. Lett. 25(3): 526–531

    Article  MathSciNet  MATH  Google Scholar 

  14. Stanimirović P S and Petković M D 2013 Gauss-Jordan elimination method for computing outer inverses. Appl. Math. Comput. 219(9): 4667–4679

    MathSciNet  MATH  Google Scholar 

  15. Stanimirović I P 2015 Computing \(A^{(2)}_{T,S}\) inverses of Hermitian matrices via \(LDL^{*}\) decomposition for a square matrix \(A\). Linear Multilinear Algebra 63(8): 1553–1567

    Article  MathSciNet  MATH  Google Scholar 

  16. Ben-Israel A and Greville T N E 2003 Generalized inverses: Theory and applications, second ed. Springer, New York

    MATH  Google Scholar 

  17. Chen Y and Chen X 2000 Representation and approximation of the outer inverse \(A^{(2)}_{T,S}\) of a matrix \(A\). Linear Algebra Appl. 308(1): 85–107

    Article  MathSciNet  MATH  Google Scholar 

  18. Chen Y and Tan X 2005 Computing generalized inverses of matrices by iterative methods based on splittings of matrices. Appl. Math. Comput. 163(1): 309–325

    MathSciNet  MATH  Google Scholar 

  19. Petković M D and Stanimirović P S 2014 Two improvements of the iterative method for computing Moore–Penrose inverse based on Penrose equations. J. Comput. Appl. Math. 267: 61–71

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu X, Jin H and Yu Y 2013 Higher-order convergent iterative method for computing the generalized inverse and its application to Toeplitz matrices. Linear Algebra Appl. 439(6): 1635–1650

    Article  MathSciNet  MATH  Google Scholar 

  21. Chen Y 1996 Iterative methods for computing the generalized inverses \(A^{(2)}_{T,S}\) of a matrix \(A\). Appl. Math. Comput. 75: 207–222

    MathSciNet  MATH  Google Scholar 

  22. Sheng X 2012 An iterative algorithm to compute the generalized inverse \(A^{(2)}_{T,S}\) under the restricted inner product. Int. J. Math. Comput. Sci. 6: 900–904

    Google Scholar 

  23. Stanimirović P S and CvetkovićIlić D S 2008 Successive matrix squaring algorithm for computing outer inverses. Appl. Math. Comput. 203(1): 19–29

    MathSciNet  MATH  Google Scholar 

  24. Srivastava S and Gupta D K 2015 An iterative method for solving general restricted linear equations. Appl. Math. Comput. 262: 344–353

    MathSciNet  Google Scholar 

  25. Srivastava S and Gupta D K 2014 A new representation for \(A^{(2,3)}_{T,S}\). Appl. Math. Comput. 243: 514–521

    MathSciNet  MATH  Google Scholar 

  26. Pan V Y and Schreiber R 1991 An improved Newton iteration for the generalized inverse of a matrix. SIAM J. Sci. Stat. Comput. 12(5): 1109–1131

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhong J, Liu X, Zhou G and Yu Y 2012 A new iterative method for computing the Drazin inverse. Filomat 26(3): 597–606

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhang S, Oyanagi Y and Sugihara M 2000 Necessary and sufficient conditions for the convergence of Orthomin(\(k\)) on singular and inconsistent linear systems. Numerishe Mathe. 87(2): 391–405

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors thank the referees for their valuable comments which have improved the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shwetabh Srivastava.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, S., Gupta, D.K. A two-step iterative method and its acceleration for outer inverses. Sādhanā 41, 1179–1188 (2016). https://doi.org/10.1007/s12046-016-0541-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12046-016-0541-4

Keywords

Navigation