Skip to main content
Log in

Non-carbon Skeletal Polymers — Polyphosphazenes (PPZs) (Inorganic Rubber)

A Promising Smart Inorganic-based Material

  • General Articles
  • Published:
Resonance Aims and scope Submit manuscript

Abstract

Poly(dichlorophosphazene), [NPCl2]n (helical structure) consisting of the unsaturated −NPC12− group (as the repeating unit), was discovered by H. N. Stokes in 1897. It is elastomeric (i.e. rubber-like property) and thermally stable and is known as inorganic rubber. However, rapid hydrolysis of this so-called inorganic rubber in moist air precluded its commercial and technical use. Due to this drawback, scientists tried to modify this rubber-like material to impart hydrolytic stability. It was found by Allcock et al. in 1965 that the high-molecular-weight poly(dichlorophosphazene) linear polymer without cross-linking, produced by controlled thermal ring-opening polymerisation (ROP) of cyclic trimer [NPCl2]3, was completely soluble in benzene and other organic solvents. The chloro groups of this soluble polymer could be completely replaced by other substituents (macromolecular substitution) to yield the inorganic-organic hybrid polymeric products [NPR2]n of good hydrolytic stability maintaining the elastomeric property. In fact, a lot of modification has been done on the actual polymer (inorganic rubber) for practical application. It is important to note that the flexible PNP group in the helical structure of inorganic rubber is isoelectronic with the SiOSi group of silicone rubber, another inorganic-based important polymeric material.

These inorganic-organic hybrid polymers having the noncarbon skeletal possess unique properties like thermal and chemical stability, easily controlled synthesis, versatile and tuneable functionalities (e.g. biostability to biodegradability, superhydrophobicity to hydrophilicity, etc.), advanced architectures of polymer networks including various types of copolymers, etc. Because of these attractive features, polyphosphazenes (PPZs) have emerged as promising inorganic-based smart materials and find versatile applications in industrial, technical and biomedical fields such as plastics, elastomers and fibres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Suggested Reading

  1. A K Das and M Das, Fundamental Concepts of Inorganic Chemistry, Vol.2, 3rd Edition, CBS Publishers & Distributors Pvt. Ltd, New Delhi 2, pp.321–326, 2021.

    Google Scholar 

  2. D P Craig and N L Paddock, A Novel Type of Aromaticity, Nature, Vol.181, pp.1052–053, 1958. https://doi.org/10.1038/1811052a0.

    Article  Google Scholar 

  3. D P Craig and K A R Mitchell, ‘Island and cyclic delocalisation in pπ—dπ systems, J. Chem. Soc., pp.4682–4690, 1965. https://doi.org/10.1039/JR9650004682.

  4. D P Craig, M L Heffernan, R Mason and N L Paddock, Delocalization and magnetic properties of the phosphonitrilic halides, J. Chem. Soc., pp.1376–1382, 1961. https://doi.org/10.1039/JR9610001376.

  5. N L Paddock, Phosphonitrilic Derivatives and Related Compounds, Quarterly Reviews, Chemical Society, Vol.18, pp.168–210, 1964. https://doi.org/10.1039/QR9641800168.

    Article  Google Scholar 

  6. M J S Dewar, E A C Lucken and M A Whitehead, The Structure of the Phosphonitrilic Halides, J. Chem. Soc., pp.2423–2429, 1960. https://doi.org/10.1039/JR9600002423.

  7. C Zhu, A K Eckhardt, A Bergantini and S K Singh, The elusive cyclotriphosphazene molecule and its Dewar benzene-type valence isomer (P3N3), Sci. Adv., Vol.6, p.eaba6934, 2020. https://doi.org/10.1126/sciadv.aba6934.

    Article  Google Scholar 

  8. L Kapicka, P Kubacek and P Holub, Bonding and aromaticity of cyclic phosphazenes viewed as interaction of fragments, Journal of Molecular Structure: THEOCHEM, Vol.820, pp.148–158, 2007. https://doi.org/10.1016/j.theochem.2007.06.022.

    Article  Google Scholar 

  9. A B Chaplin, J A Harrison and P J Dyson, Revisiting the Electronic Structure of Phosphazenes, Inorg. Chem., Vol.44, pp.8407–8417, 2005. https://doi.org/10.1021/ic0511266.

    Article  Google Scholar 

  10. P von R Schleyer, C Maerker, A Dransfeld, H Jiao and N J R van E Hommes, Nucleus-Independent Chemical Shifts: A Simple and Efficient Aromaticity Probe, J. Am. Chem. Soc., Vol.118, pp.6317–6318, 1996. https://doi.org/10.1021/ja960582d.

    Article  Google Scholar 

  11. H R Allcock and R L Kugel, Synthesis of High Polymeric Alkoxy- and Aryloxyphosphonitriles, J. Am. Chem. Soc., Vol.87, pp.4216–4217, 1965. https://doi.org/10.1021/ja01096a056.

    Article  Google Scholar 

  12. S Rothemund and I Teasdale, Preparation of Polyphosphazenes: A Tutorial Review, Chem. Soc. Rev., Vol.45, pp.5200–5215, 2016. https://doi.org/10.1039/C6CS00340K.

    Article  Google Scholar 

  13. H R Allcock, Polyphosphazene Elastomers, Gels, and Other Soft Material., Soft Matter, Vol.8, pp.7521–7532, 2012. https://doi.org/10.1039/C2SM26011E.

    Article  Google Scholar 

  14. H R Allcock, C Chen, Polyphosphazenes: Phosphorus in Inorganic-Organic Polymers, J. Org. Chem., Vol.85, pp.14286–14297, 2020. https://doi.org/10.1021/acs.joc.0c01710.

    Article  Google Scholar 

  15. K S Ogueri1, J L E Ivirico, L S. Nair1, H R Allcock and C T Laurencin, Biodegradable Polyphosphazene-Based Blends for Regenerative Engineering, Regen. Eng. Transl. Med., Vol.3, pp.15–31, 2017. https://doi.org/10.1007/s40883-016-0022-7.

    Article  Google Scholar 

  16. C Tong, Z Han, C Chen, Z Li, T Modzelewski and H R Allcock, Synthesis and Characterization of Trifluoroethoxy Polyphosphazenes Containing Polyhedral Oligomeric Silsesquioxane (POSS) Side Groups, Macromolecules, Vol.49, pp.1313–1320, 2016.

    Article  Google Scholar 

  17. H R Allcock, Chemistry and Applications of Polyphosphazenes, Wiley, Hoboken, USA, 2003.

    Google Scholar 

  18. J E Mark, H R Allcock and R West, Inorganic Polymers, 2nd Edition, Oxford University Press, 2005.

  19. H R Allcock, The Expanding Field of Polyphosphazene High Polymer, Dalton Trans., Vol.45, pp.1856–1862, 2016. https://doi.org/10.1039/c5dt03887a.

    Article  Google Scholar 

  20. Z Tian, C Chen and H R Allcock, New Mixed-Substituent Fluorophosphazene High Polymers and Small Molecule Cyclophosphazene Models: Synthesis, Characterization, and Structure Property Correlations, Macromolecules, Vol.48, pp.1483–1492, 2015. https://doi.org/10.1021/acs.macromol.5b00170.

    Article  Google Scholar 

  21. M Gorlov, N Bredov, A Esin, I Sirotin, Mikhail Soldatov, V Oberemok and V V Kireev, Novel Approach for the Synthesis of Chlorophosphazene Cycles with a Defined Size via Controlled Cyclization of Linear Oligodichlorophosphazenes [Cl(PCl2=N)n−PCl3]+[PCl6], Int. J. Mol Sci., Vol.22, pp.5958–5969, 2021. https://doi.org/10.3390/ijms22115958.

    Article  Google Scholar 

  22. H R Allcock, H. Phosphorus-Nitrogen Compounds: Cyclic, linear, and High Polymeric Systems; Elsevier: Amsterdam, The Netherlands, 2012; ISBN 978-0-323-14751-4. 2012.

    Google Scholar 

  23. C Kim and H R Allcock, A Liquid Crystalline Poly(organophosphazene), Macromolecules, Vol.20, pp.1726–1727, 1987. https://doi.org/10.1021/ma00173a050.

    Article  Google Scholar 

  24. R Schenck and G Römer, Über Die Phosphornitrilchloride Und Ihre Umsetzungen (I.), Ber. Dtsch. Chem. Ges., (A B Ser.) Vol.57, pp.1343–1355, 1924.

    Article  Google Scholar 

  25. M Becke-Goehring and W Lehr, Über Phosphor-Stickstoff-Verbindungen. XVI. Die Synthese der Phosphornitrid-dichloride, Z. Anorg. Aug. Chem., Vol.327, pp.128–138, 1964. https://doi.org/10.1002/zaac.9643270305

    Article  Google Scholar 

  26. J Emsley and P B Udy, Elucidation of the Reaction of Phosphorus Pentachloride and Ammonium Chloride by Phosphorus-31 Nuclear Magnetic Resonance Spectroscopy, J. Chem. Soc. A, pp.3025–3029, 1970. https://doi.org/10.1039/J19700003025.

  27. L G Lund, N L Paddock, J E Proctor and H T Searle, Phosphonitrilic Derivatives. Part I. The Preparation of Cyclic and Linear Phosphonitrilic Chlorides, J. Chem. Soc., pp.2542–2547, 1960. https://doi.org/10.1039/JR9600002542.

  28. H R Allcock, C A Crane, C T Morrissey and M A Olshavsky, A New Route to the Phosphazene Polymerization Precursors, Cl3PNSiMe3 and (NPCl2)3, Inorg. Chem., Vol.38, pp.280–283, 1999. https://doi.org/10.1021/ic980534p.

    Article  Google Scholar 

  29. V Blackstone, A P Soto and I Manners, Polymeric Materials Based on Main Group Elements: The Recent Development of Ambient Temperature and Controlled Routes to Polyphosphazenes, J. Chem. Soc., Dalton Trans., pp.4363–4371, 2008. https://doi.org/10.1039/B719361K.

  30. V Blackstone, S Pfirrmann, H Helten, A Staubitz, A P Soto, G R Whittell and I Manners, A Cooperative Role for the Counteranion in the PC15-Initiated Living, Cationic Chain Growth Polycondensation of the Phosphoranimine Cl3P=NSiMe3, J. Am. Chem. Soc., Vol.134, pp. 15293–15296, 2012. https://doi.org/10.1021/ja307703h.

    Article  Google Scholar 

  31. A K Das and M Das, Fundamental Concepts of Inorganic Chemistry, (Vol. 2), 3rd Edition, CBS Publishers & Distributors Pvt. Ltd, New Delhi 2, pp.158–159, 258–264, 356–357, 2021.

    Google Scholar 

  32. J E Huheey, E A Keiter, R L Keiter and O K Medhi, Inorganic Chemistry: Principles of Structure and Reactivity, Pearson Education, p.738, 2007.

  33. A K Das and M Das, Fundamental Concepts of Inorganic Chemistry, (Vol. 1), 3rd Edition, CBS Publishers & Distributors Pvt. Ltd, New Delhi 2, p.554, 2020.

    Google Scholar 

  34. https://patents.google.com ¿ patent: CN1066164C — Polyfluoro-phosphazene and producing process thereof

  35. Zhou, Xia; Qiu, Shuilai; Mu, Xiaowei; Zhou, Mutian; Cai, Wei; Song, Lei; Xing, Weiyi; Hu, Yuan, Polyphosphazenes-based Flame Retardants: A Review, Composites Part B: Engineering, Vol, 202, pp.108397–10841, 2020. https://doi.org/10.1016/j.compositesb.2020.108397

    Article  Google Scholar 

  36. http://polymerdatabase.com ¿ Phosphazenes

  37. I Manners, H R Allcock, G Renner and O Nuyken, Poly(carbophosphazenes): A New Class of Inorganic-Organic Macromolecules, J. Am. Chem. Soc., Vol.111, pp.5478–5480, 1989. https://doi.org/10.1021/ja00196a071.

    Article  Google Scholar 

  38. J A Dodge, I Manners, H R Allcock, G Renner and O Nuyken, Poly(thiophosphazenes): New Inorganic Macromolecules with Backbones Composed of Phosphorus, Nitrogen, and Sulfur Atoms, J. Am. Chem. Soc., Vol.112, pp.1268–1269, 1990. https://doi.org/10.1021/ja00159a070.

    Article  Google Scholar 

  39. Wei-Hsin Hsu, N. Csaba, C Alexander, M Garcia-Fuentes, Polyphosphazenes for the Delivery of Biopharmaceuticals, J. Appl. Polym. Sci., Vol.137, pp.48688–48698, 2020. https://doi.org/10.1002/app.48688.

    Article  Google Scholar 

  40. Zhipeng Ni, Haojie Yu, Li Wang, Di Shen, Tarig Elshaarani, Shah Fahad, Amin Khan, Fazal Haqa and Lison Teng, Recent Research Progress on Polyphosphazene-based Drug Delivery Systems, J. Mater. Chem. B, Vol.8, pp.1555–1575, 2020. https://doi.org/10.1039/C9TB02517K.

    Article  Google Scholar 

  41. K S Ogueri, J L Escobar Ivirico, Z LI, R H Blumenneid, H R Allcock and C T Laurencin, Synthesis, Physicochemical Analysis, nd Side Group Optimization of Degradable Dipeptide-Based Polyphosphazenes as Potential Regenerative Biomaterials, ACS Applied Polymer Materials, Vol.1, pp.1568–1578, 2019. https://doi.org/10.1021/acsapm.9b00333

    Article  Google Scholar 

  42. Y Ren, K Yang, D Shan, C Tong and H R Allcock, Polyphosphazenes and Cyclotriphosphazenes with Propeller-like Tetraphenylethyleneoxy Side Groups: Tuning Mechanical and Optoelectronic Properties, Macromolecules, Vol.51, pp.9974–9981, 2018. https://doi.org/10.1021/acs.macromol.8b02022.

    Article  Google Scholar 

  43. I Teasdale and O Brüggemann, Polyphosphazenes: Multifunctional, Biodegradable Vehicles for Drug and Gene Delivery, Polymers, Vol.5, pp.161–187, 2013. https://doi.org/10.3390/polym5010161

    Article  Google Scholar 

  44. K A Andrianov (Editor), Polyphosphazenes for Biomedical Applications, John Wiley & Sons, New Jersey, 2009.

    Google Scholar 

  45. S B Lee, S C Song, J I Jin, and Y S Sohn, Synthesis and Antitumor Activity of Polyphosphazene/methoxy-poly(ethylene glycol)/(diamine)platinum(II) Conjugates, Polym. J., Vol.31, pp.1247–1252, 1999. https://doi.org/10.1295/polymj.31.1247.

    Article  Google Scholar 

  46. R Song, Y J Jun, J I Kim, C Jin, and Y S Sohn, Synthesis, Characterization, and Tumor Selectivity of a Polyphosphazene-Platinum(II) Conjugate, J. Control Release, Vol.105, pp.142–150, 2005. https://doi.org/10.1016/j.jconrel.2005.03.016

    Article  Google Scholar 

  47. Y J Jun, J I Kim, M J Jun and Y S Sohn, Selective Tumor Targeting by Enhanced Permeability and Retention Effect. Synthesis and Antitumor Activity of Polyphosphazene-Platinum(II) Conjugate, J. Inorg. Biochem., Vol.99, pp.1593–1601, 2005. https://doi.org/10.1016/j.jinorgbio.2005.04.019.

    Article  Google Scholar 

  48. H R Allock, in Rings, Clusters and Polymers of the Main Group Elements (A H Cowley, Ed.), ACS Symposium Series 232, American Chemical Society, Washington DC, 1983.

  49. A K Andrianov and H R Allcock, Polyphosphazenes in Biomedicine Engineering, and Pioneering Synthesis, ACS Symposium Series; American Chemical Society: Washington, DC, 2018.

    Book  Google Scholar 

  50. X Liu, J P Breon, C Chen and H R Allcock, Substituent Exchange Reactions with High Polymeric Organophosphazenes, Macromolecules, Vol.45, pp.9100–9109, 2012. https://doi.org/10.1021/ma302087a.

    Article  Google Scholar 

  51. H R Allcock, Polyphosphazenes in Biomedicine, Engineering, and Pioneering Synthesis, Vol.1298, Chapter 1; American Chemical Society: Washington, DC, 2018.

    Google Scholar 

  52. D P DeCollibus, A Marin and A K Andrianov, Effect of Environmental Factors on Hydrolytic Degradation of Water-Soluble Polyphosphazene Polyelectrolyte in Aqueous Solutions, Biomacromolecules, Vol.11, pp.2033–2038, 2010. https://doi.org/10.1021/bm100395u.

    Article  Google Scholar 

  53. P Atkins, T Overton, J Rourke, M Weller and F Armstrong, Shriver & Atkins Inorganic Chemistry, 5th Edition, Oxford University Press, p.394, 2010.

  54. A K Das and M Das, Fundamental Concepts of Inorganic Chemistry, V61.3A, 3rd Edition, CBS Publishers & Distributors Pvt. Ltd, New Delhi 2, pp.539–563, 2022.

    Google Scholar 

Download references

12 Acknowledgements

Facilities provided by Visva Bharati University are thankfully acknowledged. The authors are thankful to Prof. Abhishek Dey (Editor) for meticulously reading the text and making some constructive suggestions to make the article more readable and informative.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ankita Das or Asim K. Das.

Additional information

This article is dedicated to Prof. Harry R. Allcock, Evan Pugh Professor of Chemistry at Pennsylvania State University, United States, for making a significant and pioneering contribution to the development of polyphosphazenes (inorganic rubber) as a useful and promising, smart inorganic-based material.

Udita Das, a DST INSPIRE Scholar, is now a PG student (chemistry) at Visva Bharati University, Santiniketan.

Ankita Das works as a DST INSPIRE Research Fellow in computational chemistry at the Indian Association for the Cultivation of Science, Kolkata.

Asim K. Das is currently a Senior Professor at the Chemistry Department, Visva Bharati, Santiniketan. He is interested in thermodynamic and kinetic aspects of metal-ligand interactions and has authored some advanced-level inorganic chemistry textbooks for undergraduate and postgraduate students.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, U., Das, A. & Das, A.K. Non-carbon Skeletal Polymers — Polyphosphazenes (PPZs) (Inorganic Rubber). Reson 28, 1523–1548 (2023). https://doi.org/10.1007/s12045-023-1689-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12045-023-1689-y

Keywords

Navigation