Skip to main content
Log in

Green Acetylation of Primary Aromatic Amines

  • Classroom
  • Published:
Resonance Aims and scope Submit manuscript

Abstract

In this section of Resonance, we invite readers to pose questions likely to be raised in a classroom situation. We may suggest strategies for dealing with them, or invite responses, or both. “Classroom” is equally a forum for raising broader issues and sharing personal experiences and viewpoints on matters related to teaching and learning science.

The tartaric acid—glacial acetic acid system is found to be a simple, inexpensive and environmentally benign catalyst for the N-acetylation of primary aromatic amines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Suggested Reading

  1. T. W. Green and P. G. M. Wuts, Protective Groups in Organic Synthesis, 3rd edn, Wiley, New York, 1999.

    Book  Google Scholar 

  2. L. Pearson, W. J. Roush, Handbook of Reagents for Organic Synthesis: Activating Agents and Protecting Groups, John Wiley and Sons, Chichester, UK, pp.9–16, 1999.

    Google Scholar 

  3. J. Iqbal and R. R. Srivastava, Cobalt (II) chloride catalysed acylation of alcohols with acetic anhydride: scope and mechanism, J. Org. Chem., 1992, 57, 2001

    Google Scholar 

  4. K. Ishihara, M. Kubota, H. Kurihara and H. Yamamoto, Scandium trifluoromethanesulfonate as an extremely active acylation catalyst, J. Am. Chem. Soc., 117, 4413, 1995

    Article  Google Scholar 

  5. J. Izumi, I. Shiina and T. Mukaiyama, An efficient esterification reaction between equimolar amounts of free carboxylic acids and alcohols by the combined use of octamethylcyclotetrasiloxane and a catalytic amount of titanium (IV) chloride tris (trifluoromethanesulfonate), Chem. Lett., 141, 1995

  6. A. G. M. Barret and D. C. Braddock, Scandium (III) or lanthanide (III) triflates as recyclable catalysts for the direct acetylation of alcohols with acetic acid, Chem. Commun., 351, 1997

  7. R. Ballini, G. Bosica, S. Carloni, L. Ciaralli, R. Maggi and G. Sartori, Zeolite HSZ-360 as a new reusable catalyst for the direct acetylation of alcohols and phenols under solventless conditions, Tetrahedron Lett., 39, 6049, 1998.

    Article  Google Scholar 

  8. T. Nishiguchi, K. Kawamine and T. Ohtsuka, Highly selective monoacylation of symmetric diols catalyzed by metal sulfates supported on silica gel, J. Org. Chem., 57, 312, 1992

    Article  Google Scholar 

  9. Y. Kita, H. Maeda, K. Omori, T. Okuno and Y. Tamura, Novel efficient synthesis of 1-ethoxyvinyl esters using ruthenium catalysts and their use in acylation of amines and alcohols: Synthesis of hydrophilic 3′-N-acylated oxaunomycin derivatives, J. Chem. Soc., Perkin Trans. 1, 2999, 1993

    Article  Google Scholar 

  10. J. Otera, Transesterification, Chem. Rev., 93, 1449, 1993

    Article  Google Scholar 

  11. A. Loupy, A. Petit, M. Ramdani, C. Yuanaeft, M. Majdoub, B. Labiad and D. Villemin, The synthesis of esters under microwave irradiation using dry-media conditions, Can. J. Chem., 71, 90, 1993

    Article  Google Scholar 

  12. G. W. Breton, Selective monoacetylation of un-symmetrical diols catalysed by silica gel-supported sodium hydrogen sulfate, J. Org. Chem., 62, 8952, 1997

    Article  Google Scholar 

  13. G. Hofle, V. Steglich and H. Vorbruggen, 4-Dialkylaminopyridines as highly active acylation catalysts, Angew. Chem., Int. Ed. Engl., 17, 569, 1978.

    Article  Google Scholar 

  14. G. Brahmachari, S. Laskar and S. Sarkar, Metal acetate/metal oxide in acetic acid: An efficient reagent for the chemoselective N-acetylation of amines under green conditions, Journal of Chemical Research, Vol.34, No.5, pp.288–295, 2010. https://doi.org/10.3184/030823410X12746305905926.

    Article  Google Scholar 

  15. X. Wang, Qian Yang, F. Liu, Q. You, Microwave-assisted synthesis of amide under solvent-free conditions, Synthetic Communications, 38:7, pp.1028–1035, 2008. DOI: https://doi.org/10.1080/00397910701860372.

    Article  Google Scholar 

  16. S. Gowda, K. M. Lokanatha Rai, Manganese(III) acetate as catalyst for the direct acetylation of alcohols with acetic acid, Journal of Molecular Catalysis A: Chemical, 217, pp.27–29, 2004.

    Article  Google Scholar 

  17. S. Jamwal, R. Dharela, R. Gupta, J. Ahn, G. S. Chauhan, Synthesis of crosslinked lipase aggregates and their use in the synthesis of aspirin, Chemical Engineering Research and Design, Vol.97, pp.159–164, 2015. https://doi.org/10.1016/j.cherd.2014.09.010.

    Article  Google Scholar 

  18. R. Biswas, A. Mukherjee, Introducing the concept of green synthesis in the undergraduate laboratory: Two-step synthesis of 4-bromoacetanilide from aniline, J. Chem. Educ., 94, 9, pp.1391–1394, 2017. https://doi.org/10.1021/acs.jchemed.6b00749

    Article  Google Scholar 

  19. K. V. V. K. Mohan, N. Narender, S. J. Kulkarni, Zeolite catalyzed acylation of alcohols and amines with acetic acid under microwave irradiation, Green Chem., 8, pp.368–372, 2006. DOI: https://doi.org/10.1039/b600031b.

    Article  Google Scholar 

  20. N. Narender, P. Srinivasu, S. J. Kulkarni, K. V. Raghavan, Liquid phase acylation of alcohols with acetic acid over zeolites, Synth. Commun., 30, 1887, 2000

    Article  Google Scholar 

  21. N. Narender, P. Srinivasu, S. J. Kulkarni and K. V. Raghavan, Liquid phase acylation of amines with acetic acid over HY zeolite, Green Chem., 3, 104, 2000.

    Article  Google Scholar 

  22. R. Alleti, M. Perambuduru, S. Samantha and V. Prakash Reddy, Gadolinium triflate: An efficient and convenient catalyst for acetylation of alcohols and amines, J. Mol. Catal. A, 226, 57, 2005.

    Article  Google Scholar 

  23. T. N. Parac-Vogt, K. Deleersnyder and K. Binnemans, Lanthanide (III) tosylates as new acylation catalysts, Eur. J. Org. Chem., 1810, 2005.

  24. S. Velusamy, S. Borpuzari and T. Punniyamurthy, Cobalt (II)-catalysed direct acetylation of alcohols with acetic acid, Tetrahedron, 2005, 61, 2011.

    Google Scholar 

  25. R Ghosh, S. Maiti and A. Chakraborty, Facile catalyzed acylation of alcohols, phenols, amines and thiols based on ZrOCl2.8H2O and acetyl chloride in solution and in solvent-free conditions, Tetrahedron Lett., 46, 147, 2005.

    Article  Google Scholar 

  26. D. E. Raup, B. Cardinal-David, D. Holte, and K. A. Scheidt, Cooperative catalysis by carbenes and Lewis acids in a highly stereoselective route to γ-lactams, Nat Chem., Sep; 2(9), pp.766–771, 2010.

    Article  Google Scholar 

  27. C. Li, M. Wang, X. Lu, L. Zhang, J. Jiang, L. Zhang, Reusable Brønsted acidic ionic liquid efficiently catalysed N-formylation and N-acylation of amines, ACS Sustainable Chem. Eng., 8(11), pp.4353–4361, 2020.

    Article  Google Scholar 

  28. B. Karami, S. Khodabakhshi, A facile synthesis of phenazine and quinoxaline derivatives using magnesium sulfate heptahydrate as a catalyst, J. Serb. Chem. Soc., 76(9), pp.1191–1198, 2011.

    Article  Google Scholar 

  29. D. Yang, L. Wang, D. Li, R. Wang, Magnesium catalysis in asymmetric synthesis, Chem, Vol.5, No.5, pp.1108–1166, May 9, 2019.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharda Pasricha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pasricha, S., Rangarajan, T.M. Green Acetylation of Primary Aromatic Amines. Reson 28, 325–331 (2023). https://doi.org/10.1007/s12045-023-1551-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12045-023-1551-2

Keywords

Navigation