Skip to main content
Log in

Maxwell’s Demon, Szilard Engine and Landauer Principle

  • General Article
  • Published:
Resonance Aims and scope Submit manuscript

Abstract

The second law of thermodynamics is probabilistic in nature. Its formulation requires that the state of a system be described by a probability distribution. A natural question, thereby, arises as to whether a prior knowledge about the state of the system affects the second law. This question has now been nurtured for over a century, and it was incepted by C Maxwell through his famous thought experiment wherein comes the idea of Maxwell’s demon. The next important step in this direction was provided by L Szilard, who demonstrated a theoretical model for an information engine incorporating Maxwell’s demon. The final step that led to the inter-linkage of information theory and thermodynamics was through Landauer’s principle of information erasure that established the fact that information is physical. Here, we will present an overview of these three major works that laid the foundations of information thermodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Suggested Reading

  1. J C Maxwell, Theory of Heat, Longmans, London, 1871.

    Google Scholar 

  2. K Maruyama, F Nori, and V Vedral, Rev. Mod. Phys., Vol.81, No.1, 2009.

    Google Scholar 

  3. L Szilard, Z. Phys., Vol.53, No.840, 1929.

    Google Scholar 

  4. R Landauer, IBM J. Res. Dev., Vol.5, No.183, 1961.

    Google Scholar 

  5. R Landauer, Phys. Today, Vol.44, No.23, 1991.

    Google Scholar 

  6. M Esposito and C Van Den Broeck, Europhys. Lett., Vol.95, p.40004, 2011.

    Article  Google Scholar 

  7. D Mandal and C Jarzynski, Proceedings of the National Academy of Sciences, Vol.109, p.11641, 2012.

    Article  Google Scholar 

  8. T Sagawa and M Ueda, Phys. Rev. E., Vol.85, p.021104, 2012.

    Article  Google Scholar 

  9. D Mandal, H T Quan and C Jarzynski, Phys. Rev. Lett., Vol.111, p.030602, 2013.

    Article  Google Scholar 

  10. J M R Parrondo, J M Horowitz and T Sagawa, Nature Physics, Vol.11, p.131, 2015.

    Article  Google Scholar 

  11. S Rana and A M Jayannavar, J. Stat. Mech., p.103207, 2016.

  12. S Rana and A M Jayannavar, arXiv:1611.01993.

  13. S W Kim, T Sagawa, S De Liberto and M Ueda, Phys. Rev. Lett., Vol.106, p.070401, 2011.

    Article  Google Scholar 

  14. Yao Lu and Gui Lu Long, Phys. Rev., Vol.85, p.011125, 2012.

    Google Scholar 

  15. H J Jeon and S W Kim, New J. Phys., Vol.18, p.043002, 2016.

    Article  Google Scholar 

  16. H Yan and H Guo, Phys. Rev. E, Vol.86, p.051135, 2012.

    Article  Google Scholar 

  17. H Yan and H Guo, Phys. Rev. E, Vol.85, p.011146, 2012.

    Article  Google Scholar 

  18. R Wang, J Wang, J He and Y Ma, Phys. Rev. E, Vol.86, p.021133, 2012.

    Article  Google Scholar 

  19. X L Huang, H Xu, X Y Niu and Y D Fu, Physica Scripta, Vol.88, p.065008, 2013.

    Article  Google Scholar 

  20. H Li, J Zou, Wen-Li Yu, L Li, Bao-Ming Xu and B Shao, Eur. Phys. J.D, Vol.67, p.134, 2013.

    Article  Google Scholar 

  21. Y Yuan, H Ji-Zhou and G Yong, Commun. Theor. Phys., Vol.61, p.344, 2014.

    Article  Google Scholar 

  22. Z Zhuang, S D Liang, Phys. Rev. E, Vol.90, p.052117, 2014.

    Article  Google Scholar 

  23. X L Huang, X Y Niu, X M Xiu and X Y Xue, Eur. Phys. J.D, Vol.68, p.32, 2014.

    Article  Google Scholar 

  24. J Wang, Y Ma and J He, Europhys. Lett., Vol.111, p.20006, 2015.

    Article  Google Scholar 

  25. J Pearson, G R Feng, C Zheng and G L Long, Science China Physics, Mechanics & Astronomy, Vol.59, p.120312, 2016.

    Article  Google Scholar 

  26. T Li and Z Q Yin, Science Bulletin, Vol.61, pp.163–171, 2016.

    Article  Google Scholar 

  27. C H Bennett, Int. J. Theor. Phys., Vol.21, p.905, 1982.

    Article  Google Scholar 

  28. A Bérut, A Arakelyan, A Petrosyan, S Ciliberto, R Dillenschneider and E Lutz, Nature, Vol.483, pp.187–189, 2012.

    Article  Google Scholar 

  29. T Sagawa and M Ueda, J. Theor. Phys., Vol.102, p.250602, 2009.

    Google Scholar 

  30. S W Kim, T Sagawa, S D Liberato and M Ueda, Phys. Rev. Lett., Vol.106, p.070401, 2011.

    Article  Google Scholar 

Download references

Acknowledgment

Arun M Jayannavar thanks DST, India for financial support (through J. C. Bose National Fellowship).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. S. Pal or A. M. Jayannavar.

Additional information

P S Pal was a doctoral research scholar at the Institute of Physics, Bhubaneswar. He has joined as postdoc researcher at University of Maryland, Baltimore County, USA. His main research interest is non-equilibrium statistical mechanics and information theory.

A M Jayannavar is a Senior Professor at the Institute of Physics, Bhubaneswar. His research interest lies broadly in different aspects of statistical mechanics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, P.S., Jayannavar, A.M. Maxwell’s Demon, Szilard Engine and Landauer Principle. Reson 26, 443–462 (2021). https://doi.org/10.1007/s12045-021-1141-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12045-021-1141-0

Keywords

Navigation