Skip to main content
Log in

Nuclear magnetic resonance

An early history

  • General/Article
  • Published:
Resonance Aims and scope Submit manuscript

Abstract

This article summarizes the early history of nuclear magnetic resonance (NMR) during the first 25–30 years. The methodology went through vigorous growth and development during this time, laying the theoretical basis for understanding a wide array of applications. The stage was set for the breathtaking advances the technique underwent by taking advantage of technological developments in superconducting magnets, and computational and digital technologies. It has thus become the versatile investigative tool for natural phenomena that it is today, not only in physics and chemistry, but also in biology and medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Suggested Reading

  1. E M Purcell, H C Torrey and R V Pound, Resonance absorption by nuclear magnetic moments in a solid, Phys. Rev. Vol.69, p.37, 1946.

    Article  Google Scholar 

  2. F Bloch, W W Hansen and M Packard, Nuclear induction, Phys. Rev. Vol.69, p.127, 1946. The nuclear induction experiment, ibid. Vol.70, pp.474–485, 1946.

    Article  Google Scholar 

  3. F Bloch, Nuclear induction, ibid. Vol.70, pp.460–474, 1946.

    Google Scholar 

  4. G Suryan, Nuclear magnetic resonance and the effect of the methods of observation, Current Science, Vol.18, pp.203–204, 1949.

    Google Scholar 

  5. G Suryan, A new method of integration of nuclear magnetic resonance signals, Phys. Rev., Vol.80, p.119, 1950.

    Article  Google Scholar 

  6. G Suryan, Nuclear resonance in flowing liquids, Proc. Ind. Acad. Sci., Sec.A, Vol.33, pp.107–111, 1951.

    Google Scholar 

  7. N Bloembergen, E M Purcell, and R V Pound, Relaxation effects in nuclear magnetic resonance absorption, Phys. Rev., Vol.73, pp.679–712, 1948.

    Article  Google Scholar 

  8. R K Wangness and F Bloch, The dynamical theory of nuclear induction, Phys. Rev., Vol.89, pp.728–739, 1953.

    Article  Google Scholar 

  9. F Bloch, Dynamical theory of nuclear Induction II, Phys. Rev., Vol.102, pp.104–135, 1956.

    Article  Google Scholar 

  10. A G Redfield, On the theory of relaxation processes, IBM. J., Vol.1, pp.19–31, 1957.

    Article  Google Scholar 

  11. E L Hahn, Spin echoes, Phys. Rev., Vol.80, pp.580–594, 1950.

    Article  Google Scholar 

  12. H Y Carr and E M Purcell, Effects of diffusion on free precession in nuclear magnetic resonance experiments, Phys. Rev., Vol.94, pp.630–638, 1954.

    Article  Google Scholar 

  13. N A Kunirt, I D Abella and S R Hartmann, Observation of photon echo, Phys. Rev. Lett., Vol.13, pp.567–568, 1964.

    Article  Google Scholar 

  14. G Vemuri, G S Agarwal, and B D Nageswara Rao, Sub-Doppler resolution in inhomogeneously broadened media using intense control fields, Phys. Rev., Vol.A53, pp.2842–2844, 1996.

    Article  Google Scholar 

  15. A W Overhauser, Polarization of nuclei in metals, Phys. Rev., Vol.92, pp.411–415, 1953.

    Article  Google Scholar 

  16. T R Carver and C P Slichter, Experimental verificationof theOverhauser nuclear polarization effect, Phys. Rev., Vol.102, pp.975–980, 1956.

    Article  Google Scholar 

  17. G Feher, Observation of nuclear magnetic resonances via the electron spin resonances, Phys. Rev., Vol.103, pp.834–835, 1956.

    Article  Google Scholar 

  18. B D Nageswara Rao, Nuclear magnetic resonance line-shape analysis and determination of exchange rates, Methods in Enzymology, Vol.176, pp.279–311, 1989.

    Article  Google Scholar 

  19. B D Nageswara Rao, Nuclear spin relaxation by double resonance, Advances in Magnetic Resonance, Vol.4, pp.271–332, 1970.

    Article  Google Scholar 

  20. J H Noggle and R E Schirmer, The nuclear Overhauser effect, Academic Press, 1971.

    Google Scholar 

  21. I J Lowe and R E Norberg, Free-induction decay in solids, Phys. Rev., Vol.107, pp.46–61, 1957.

    Article  Google Scholar 

  22. R R Ernst and W A Anderson, Application of Fourier transform spectroscopy to magnetic resonance, Rev. Sci. Instr., Vol.37, pp.93–102, 1966.

    Article  Google Scholar 

  23. E R Andrew, A Bradbury and R G Eades, Nuclear magnetic resonance spectra from a crystal rotated at very high speed, Nature, Vol.182, p.1659, 1958.

    Article  Google Scholar 

  24. I Lowe, Free induction decay of rotating solids, Phys. Rev. Lett., Vol.2, pp.285–287, 1959.

    Article  Google Scholar 

  25. J S Waugh, L M Huber and U Haeberlin, Approach to high resolution NMR in solids, Phys. Rev. Lett., Vol.20, pp.180–182, 1968.

    Article  Google Scholar 

  26. P Mansfield, Symmetrized pulse sequences in high resolution NMR in solids, J. Phys., Vol.C4, p.1444, 1971.

    Google Scholar 

  27. S R Hartmann, and E L Hahn, Nuclear double resonance in the rotating frame, Phys. Rev., Vol.128, pp.2042–2053, 1962.

    Article  Google Scholar 

  28. A Pines, M GGibby and J S Waugh, Proton-enhanced nuclear induction spectroscopy, Method for high resolution NMR of dilute spins in solids, J. Chem. Phys., Vol.56, pp.1776–1777, 1972.

    Article  Google Scholar 

  29. A Pines, M GGibby and J S Waugh, Proton-enhanced NMR of dilute spins in solids, ibid. Vol.59, pp.569–590, 1973.

    Google Scholar 

  30. J Jeener, Ampere International Summer school, Basko Polje, Yugoslovia, 1971.

    Google Scholar 

  31. P C Lauterbur, Image formation by induced local interactions: examples employingnuclear Imagnetic resonance, Nature, Vol.242, pp.190–191, 1973.

    Article  Google Scholar 

  32. A Kumar, D Welti and R R Ernst, NMR Fourier zeugmatography, J. Magn. Reson., Vol.18, pp.69–83, 1975.

    Google Scholar 

  33. R R Ernst, G Bodenhausen, and A Wokaun, Principles of NMR in one and two dimensions, Clarendon Press, Oxford, 1987.

    Google Scholar 

  34. A Abragam, The Principles of nuclear magnetism, Clarendon, Oxford, 1961.

    Google Scholar 

  35. C P Slichter, Principles of magnetic resonance, 3rd edition, Springer–Verlag, Berlin, 1989.

    Google Scholar 

  36. R Freeman, Spin choreography, Clarendon, Oxford (1999).

  37. M H Levitt, Spin dynamics, Wiley, New York (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. D. Nageswara Rao.

Additional information

B D Nageswara Rao is Professor Emeritus at the Department of Physics, Indiana University Purdue University, Indianapolis (IUPUI), USA. His main areas of research are NMR spectroscopy, double resonance methods, NMR relaxation theories and applications to chemical exchange in biomolecules.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nageswara Rao, B.D. Nuclear magnetic resonance. Reson 20, 969–985 (2015). https://doi.org/10.1007/s12045-015-0265-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12045-015-0265-5

Keywords

Navigation