Skip to main content
Log in

Minimality and non-existence of non-zero finite orbits for abelian linear semigroups

  • Published:
Proceedings - Mathematical Sciences Aims and scope Submit manuscript

Abstract

Let G be an abelian semigroup of matrices on \({\mathbb {K}}^{n}\) (\({\mathbb {K}}={\mathbb {C}}\) or \({\mathbb {R}}\)). We show that if G is hypercyclic, then it has no non-zero finite orbit. This result fails if we drop the assumption that G is abelian. As a consequence, if G is abelian, it is not chaotic. On the other hand, we show that G is not minimal for \(n\ge 3\), but it can be minimal for \(n=1\); for \({\mathbb {K}}={\mathbb {R}}\), the critical number is \(n=2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abels H and Manoussos A, Topological generators of abelian Lie groups and hypercyclic finitely generated abelian semigroups of matrices, Adv. Math. 229 (2012) 1862–1872

    Article  MathSciNet  Google Scholar 

  2. Ayadi A and Marzougui H, Dynamic of abelian subgroups of GL(\(n\), \({\mathbb{C}}\)): A structure theorem, Geometriae Dedicata 116 (2005) 111–127

  3. Ayadi A and Marzougui H, Dense orbits for abelian subgroups of GL(n, \({\mathbb{C}}\)), in Foliations 2005, edited by P G Walczak (2006) (World Scientific) pp. 47–69

  4. Ayadi A and Marzougui H, Abelian semigroups of matrices on \({\mathbb{C}}^{n}\) and hypercyclicity, Proc. Edinburg Math. Soc. 57 (2014) 323–338

    Article  MathSciNet  Google Scholar 

  5. Ayadi A, Marzougui H and Salhi E, Hypercyclic abelian subgroup of \({{\rm GL}}(n,{\mathbb{R}})\), J. Difference Equations Appl. 18(2012) 721–738

    Article  MathSciNet  Google Scholar 

  6. Ayadi A and Marzougui H, Hypercyclic abelian semigroups of matrices on \({\mathbb{R}}^{n}\), Topol. Appl. 210 (2016) 29–45; Corrigendum: Topology Appl. 287 (2021) 107330

  7. Bayart F and Matheron E, Dynamics of Linear Operators, Cambridge Tracts in Math., vol. 179 (2009) (Cambridge University Press)

  8. Bonet J, Martinez-Gimenez F and Peris A, A Banach space which admits no chaotic operator, Bull. London Math. Soc. 33 (2001) 196–198

    Article  MathSciNet  Google Scholar 

  9. Cairns G, Davis G, Elton D, Kolganova A and Perversi P, Chaotic group actions, Enseign. Math. 41 (1995) 123–133

    MathSciNet  Google Scholar 

  10. Costakis G, Hadjiloucas D and Manoussos A, Dynamics of tuples of matrices, Proc. Amer. Math. Soc. 137 (2009) 1025–1034

    Article  MathSciNet  Google Scholar 

  11. Costakis G, Hadjiloucas D and Manoussos A, Dynamics of tuples of complex upper triangular Toeplitz matrices, arXiv: 1008.0780v2 (2010)

  12. Feldman N S, Hypercyclic tuples of operators and somewhere dense orbits, J. Math. Anal. Appl. 346 (2008) 82–98

    Article  MathSciNet  Google Scholar 

  13. Godefroy G and Shapiro J H, Operators with dense, invariant, cyclic vector manifolds, J. Funct. Anal. 98 (1991) 229–269

    Article  MathSciNet  Google Scholar 

  14. Grosse-Erdmann K G and Peris A, Linear Chaos, Springer, Universitext (2011)

    Book  Google Scholar 

  15. Javaheri M, Semigroups of matrices with dense orbits, Dyn. Syst. 26 (2011) 235–243

    Article  MathSciNet  Google Scholar 

  16. Read C J, The invariant subspace problem for a class of Banach spaces. II. Hypercyclic operators, Israel J. Math. 63 (1988) 1–40

    Article  MathSciNet  Google Scholar 

  17. Salas H N, Pathological hypercyclic operators, Arch. Math. 86 (2006) 241–250

    Article  Google Scholar 

  18. Shkarin S, Hypercyclic tuples of operator on \({\mathbb{C}}^{n}\) and \({\mathbb{R}}^{n}\), Linear Multilinear Alg. 60 (2012) 885–896

    Article  MathSciNet  Google Scholar 

  19. Schneider F M, Kerkhoff S, Behrisch M and Siegmund S, Chaotic actions of topological semigroups, Semigroup Forum 87 (2013) 590–598

    Article  MathSciNet  Google Scholar 

  20. Vellekoop M and Berglund R, On intervals, transitivity = chaos, Amer. Math. Monthly, 101 (1994) 353–355

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the research unit: “Dynamical systems and their applications” (UR17ES21), Ministry of Higher Education and Scientific Research, Faculty of Science of Bizerte, Tunisia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Habib Marzougui.

Additional information

Communicating Editor: Sameer Chavan

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayadi, A., Marzougui, H. Minimality and non-existence of non-zero finite orbits for abelian linear semigroups. Proc Math Sci 134, 7 (2024). https://doi.org/10.1007/s12044-023-00769-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12044-023-00769-9

Keywords

2010 Mathematics Subject Classification

Navigation