Skip to main content
Log in

The second moment of the Fourier coefficients of triple product \({\varvec{L}}\)-functions

  • Published:
Proceedings - Mathematical Sciences Aims and scope Submit manuscript

Abstract

Suppose that \(\mathbb {H}^*\) is the set of all primitive cusp forms f of even integral weight \(k\ge 2\) for the full modular group \(SL_2(\mathbb {Z})\). In this paper, we establish asymptotic formulas for the second moment of Fourier coefficients of the triple product L-function \(L(s, f\otimes f \otimes f)\) and the related L-function \(L(s, \textrm{sym}^2f \otimes f)\) attached to f on average, which improves previous results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bourgain J, Decoupling, exponential sums and the Riemann zeta function, J. Amer. Math. Soc. 30 (2017) 205–224

    Article  MathSciNet  MATH  Google Scholar 

  2. Chung K L and Aitsahia F, Elementary Probability Theory, 4th ed. (2003) (New York: Springer)

    Book  Google Scholar 

  3. Davenport H, On certain exponential sums, J. Reine Angew. Math. 169 (1932) 158–176

    MathSciNet  MATH  Google Scholar 

  4. Deligne P, La conjecture de Weil, I, Inst. Hautes Études Sci. Publ. Math. 43 (1974) 273–307

    Article  MathSciNet  MATH  Google Scholar 

  5. Fomenko O M, Fourier coefficients of parabolic forms, and automorphic \(L\)-functions, J. Math. Sci. 95 (1999) 2295–2316

    Article  MathSciNet  Google Scholar 

  6. Gelbart S and Jacquet H, A relation between automorphic representations of \(GL(2)\) and \(GL(3)\), Ann. Sci.\(\acute{E}\)cole Norm. Sup. 11 (1978) 471–542

  7. Hafner J L and Ivić A, On sums of Fourier coeffcients of cusp forms, Enseign. Math. 35 (1989) 375–382

    MathSciNet  MATH  Google Scholar 

  8. Hecke E, Theorie der Eisensteinschen Reihen höherer Stufe und ihre Anwendung auf Funktionentheorie und Arithmetik, Abh. Math. Sem. Univ. Hamburg 5 (1927) 199–224

    Article  MathSciNet  MATH  Google Scholar 

  9. Huang B R, On Rankin–Selberg problem, Math. Ann. 381 (2021) 1217–1251

  10. Ivić A, Exponent pairs and the zeta function of Riemann, Studia Sci. Math. Hungar. 15 (1980) 157–181

    MathSciNet  MATH  Google Scholar 

  11. Iwaniec H and Kowalski E, Analytic Number Theory, Amer. Math. Soc. Colloquium Publ. 53 (2004) (Providence: Amer. Math. Soc.)

  12. Kim H H, Functoriality for the exterior square of \(GL_4\) and symmetric fourth of \(GL_2\), J. Amer. Math. Soc. 16 (2003) 139–183

    Article  MathSciNet  Google Scholar 

  13. Kim H H and Shahidi F, Functorial products for \(GL_2 \times GL_3\) and the symmetric cube for \(GL_2\), Ann. Math. 155 (2002) 837–893

    Article  MathSciNet  Google Scholar 

  14. Kim H H and Shahidi F, Cuspidality of symmetric powers with applications, Duke Math. J. 112 (2002) 177–197

    Article  MathSciNet  MATH  Google Scholar 

  15. Kloosterman H D, Asymptotische Formeln für die Fourier-koeffizienten ganzer Modulformen, Abh. Math. Sem. Univ. Hamburg 5 (1927) 337–352

    Article  MathSciNet  MATH  Google Scholar 

  16. Lau Y K and Lü G S, Sums of Fourier coefficients of cusp forms, Quart. J. Math. 62 (2011) 687–716

    Article  MathSciNet  MATH  Google Scholar 

  17. Lau Y K, Lü G S and Wu J, Integral power sums of Hecke eigenvalues, Acta Arith. 150 (2011) 193–207

    Article  MathSciNet  MATH  Google Scholar 

  18. Lin Y X, Nunes R M and Qi Z, Strong subconvexity for self-dual \(GL(3)\)\(L\)-functions, arXiv: 2112.14396 (2021)

  19. Liu H F, Mean value estimates of the coefficients of product \(L\)-functions, Acta Math. Hungar. 156 (2018) 102–111

    Article  MathSciNet  MATH  Google Scholar 

  20. Lü G S, Average behavior of Fourier coefficients of cusp forms, Proc. Amer. Math. Soc. 137 (2009) 1961–1969

    Article  MathSciNet  MATH  Google Scholar 

  21. Lü G S, The sixth and eighth moments of Fourier coefficients of cusp forms, J. Number Theory 129 (2009) 2790–2800

    Article  MathSciNet  MATH  Google Scholar 

  22. Lü G S, On higher moments of Fourier coefficients of holomorphic cusp forms, Canad. J. Math. 63 (2011) 634–647

    Article  MathSciNet  MATH  Google Scholar 

  23. Lü G S and Sankaranarayanan A, Higher moments of Fourier coefficients of cusp forms, Canad. Math. Bull. 58 (2015) 548–560

    Article  MathSciNet  MATH  Google Scholar 

  24. Lü G S and Sankaranarayanan A, On the coefficients of triple product \(L\)-functions, Rocky Mountain J. Math. 47 (2017) 553–570

    Article  MathSciNet  MATH  Google Scholar 

  25. Matsumoto K, The mean values and the universality of Rankin–Selberg \(L\)-functions, in: Number theory (Turku, 1999) (2001) (Berlin: de Gruyter) pp. 201–221

  26. Moreno C J and Shahidi F, The fourth moment of Ramanujan \(\tau \)-function, Math. Ann. 266 (1983) 233–239

    Article  MathSciNet  MATH  Google Scholar 

  27. Newton J and Thorne J A, Symmetric power functoriality for holomorphic modular forms, Publ. Math. Inst. Hautes Études Sci. 134 (2021) 1–116

    Article  MathSciNet  MATH  Google Scholar 

  28. Newton J and Thorne J A, Symmetric power functoriality for holomorphic modular forms, II, Publ. Math. Inst. Hautes Études Sci. 134 (2021) 117–152

    Article  MathSciNet  MATH  Google Scholar 

  29. Perelli A, General \(L\)-functions, Ann. Mat. Pura Appl. 130 (1982) 287–306

    Article  MathSciNet  MATH  Google Scholar 

  30. Ramachandra K and Sankaranarayanan A, Notes on the Riemann zeta-function, J. Indian Math. Soc. 57 (1991) 67–77

    MathSciNet  MATH  Google Scholar 

  31. Rankin R A, Contributions to the theory of Ramanujan’s function \(\tau (n)\) and similar arithmetical functions. I, The zeros of the function \(\sum _{n=1}^{\infty }\tau (n)/n^s\) on the line \(\Re {\rm e}(s) = 13/2\). II, The order of the Fourier coefficients of integral modular forms, in Mathematical Proceedings of the Cambridge Philosophical Society, vol. 35 (1939) pp. 351–372

  32. Rankin R A, Sums of cusp form coefficients, in: Automorphic Forms and Analytic Number Theory (1990) (Montreal: University of Montreal)

  33. Salié H, Zur Abschatzung der Fourierkoeffizienten ganzer Modulformen, Math. Z. 36 (1933) 263–278

    Article  MathSciNet  MATH  Google Scholar 

  34. Selberg A, Bemerkungen über eine Dirichletsche Reihe, die mit der Theorie der Modulformen nahe verbunden ist, Arch. Math. Natur. 43 (1940) 47–50

    MATH  Google Scholar 

  35. Walfisz A, Über die Koeffizientensummen einiger Moduformen, Math. Ann. 108 (1933) 75–90

    Article  MathSciNet  MATH  Google Scholar 

  36. Weil A, On some exponential sums, Proc. Indian Acad. Sci. (Math. Sci.) 34 (1948) 204–207

  37. Wilton J R, A note on Ramanujan’s arithmetical function \(\tau (n)\), Proc. Cambridge Philos. Soc. 25 (1928) 121–129

    Article  MATH  Google Scholar 

  38. Wu J, Power sums of Hecke eigenvalues and application, Acta Arith. 137 (2009) 333–344

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author is very grateful to the referee for many valuable suggestions and comments. This work is supported by the National Natural Science Foundation of China (Grant Nos 12171286 and 11801328).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huafeng Liu.

Additional information

Communicated by B Sury.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H. The second moment of the Fourier coefficients of triple product \({\varvec{L}}\)-functions. Proc Math Sci 133, 8 (2023). https://doi.org/10.1007/s12044-023-00733-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12044-023-00733-7

Keywords

2010 Mathematics Subject Classification

Navigation