Skip to main content
Log in

Existence and multiplicity of positive solutions to sub-elliptic systems with multiple critical exponents on Carnot groups

  • Published:
Proceedings - Mathematical Sciences Aims and scope Submit manuscript

Abstract

In this work, we study the Nehari manifold and its application to the following sub-elliptic system involving the multiple critical Sobolev exponents:

$$\begin{aligned} \left\{ \begin{array}{ll} -\Delta _{\mathbb {G}}u=|u|^{2^*-2}u + \frac{\lambda \alpha }{\alpha +\beta }|u|^{\alpha -2}u |v|^{\beta } + \mu g(z)|u|^{q-2}u,&{}\quad z\in \Omega ,\\ -\Delta _{\mathbb {G}}v= |v|^{2^*-2}v + \frac{\lambda \beta }{\alpha +\beta }|u|^{\alpha }|v|^{\beta -2}v +\nu h(z)|v|^{q-2}v,&{}\quad z\in \Omega ,\\ u = v = 0, &{}\quad z\in \partial \Omega , \end{array}\right. \end{aligned}$$

where \(\Omega \) is an open bounded subset of \(\mathbb {G}\) with smooth boundary, \(-\Delta _{\mathbb {G}}\) is the sub-Laplacian on Carnot group \(\mathbb {G}\), \(\lambda > 0\) is a parameter, \(1< q < 2\), \(\alpha \), \(\beta >1\), \(\alpha +\beta =2^*\), \(2^*=\frac{2Q}{Q-2}\) is the critical Sobolev exponent, and Q is the homogeneous dimension of \(\mathbb {G}\). By exploiting the Nehari manifold and variational methods, we prove that the system has at least two positive solutions when the pair of the parameters \((\mu ,\nu )\) belongs to a certain subset of \(\mathbb {R}^{2}_{+}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosetti A, Brezis H and Cerami G, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal. 122 (2) (1994) 519–543

    Article  MathSciNet  MATH  Google Scholar 

  2. Bartsch T and Willem M, On an elliptic equation with concave and convex nonlinearities, Proc. Amer. Math. Soc. 123 (1995) 3555–3561

    Article  MathSciNet  MATH  Google Scholar 

  3. Bonfiglioli A and Uguzzoni F, Nonlinear Liouville theorems for some critical problems on H-type groups, J. Functional Analysis 207 (2004) 161–215

    Article  MathSciNet  MATH  Google Scholar 

  4. Bonfiglioli A, Lanconelli E and Uguzzoni F, Stratified Lie Groups and Potential Theory for their Sub-Laplacians (2007) (Berlin, Heidelberg: Springer)

  5. Bony J-M, Principle du maximum, inégalité de Harnack et unicité du probléme de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Inst. Fourier Grenobles 19 (1969) 277–304

    Article  MATH  Google Scholar 

  6. Brezis H and Nirenberg L, Positive solutions of nonlinear elliptic equations involving critical exponents, Comm. Pure Math. Appl. 36 (1983) 437–477

    Article  MathSciNet  MATH  Google Scholar 

  7. Brown K J and Wu T-F, A semilinear elliptic system involving nonlinear boundary condition and sign changing weight function, J. Math. Anal. Appl. 337 (2008) 1326–1336

    Article  MathSciNet  MATH  Google Scholar 

  8. Brown K J and Zhang Y, The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function, J. Differential Equ. 193(2) (2003) 481–499

    Article  MathSciNet  MATH  Google Scholar 

  9. Danielli D, Garofalo N and Phuc N C, Hardy–Sobolev type inequalities with sharp constants in Carnot–Carathéodory spaces, Potential Anal. 34 (2011) 223–242

    Article  MathSciNet  MATH  Google Scholar 

  10. de Morais Filho D C and Souto M A S, Systems of \(p\)-Laplacian equations involving homogeneous nonlinearities with critical Sobolev exponent degrees, Comm. Partial Diff. Equ. 24(7–8) (1999) 1537–1553

    Article  MATH  Google Scholar 

  11. Ferrari F and Franchi B, Harnack inequality for fractional sub-Laplacians in Carnot groups, Math. Z. 279 (2015) 435–458

    Article  MathSciNet  MATH  Google Scholar 

  12. Figueiredo D G, Gossez J P and Ubilla P, Local superlinearity and sublinearity for the \(p\)-Laplacian, J. Funct. Anal. 257 (2009) 721–752

    Article  MathSciNet  MATH  Google Scholar 

  13. Folland G B, Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat. 13 (1975) 161–207

    Article  MathSciNet  MATH  Google Scholar 

  14. Folland G B and Stein E M, Hardy Spaces on Homogeneous Groups, Volume 28 of Mathematical Notes (1982) (Princeton, NJ: Princeton University Press)

  15. Garofalo N and Vassilev D, Regularity near the characteristic set in the non-linear Dirichlet problem and conformal geometry of sub-Laplacians on Carnot Groups, Math. Ann. 318 (2000) 453–516

    Article  MathSciNet  MATH  Google Scholar 

  16. Hamidi E I, Multiple solutions with changing sign energy to a nonlinear elliptic equation, Commun. Pure Appl. Anal. 3 (2004) 253–266

    MathSciNet  MATH  Google Scholar 

  17. Hsu T-S, Multiple positive solutions for a critical quasilinear elliptic system with concave–convex nonlinearities, Nonlinear Anal. 71 (2009) 2688–2698

    Article  MathSciNet  MATH  Google Scholar 

  18. Kang D, Positive minimizers of the best constants and solutions to coupled critical quasilinear systems, J. Differ. Equ. 260 (2016) 133–148

    Article  MathSciNet  MATH  Google Scholar 

  19. Loiudice A, Semilinear subelliptic problems with critical growth on Carnot groups, Manuscript Math. 124 (2007) 247–259

    Article  MathSciNet  MATH  Google Scholar 

  20. Loiudice A, Critical growth problems with singular nonlinearities on Carnot groups, Nonlinear Anal. 126 (2015) 415–436

    Article  MathSciNet  MATH  Google Scholar 

  21. Loiudice A, Local behavior of solutions to sunelliptic problems with Hardy potential on Carnot groups, Mediterr. J. Math. 15 (2018) Art. No. 81

  22. Loiudice A, Optimal decay of \(p\)-Sobolev extremals on Carnot groups, J. Math. Anal. Appl. 470 (2019) 619–631

    Article  MathSciNet  MATH  Google Scholar 

  23. Nyamoradi N, Existence and multiplicity of solutions to a singular elliptic system with critical Sobolev–Hardy exponents and concave-convex nonlinearities, J. Math. Anal. Appl. 396 (2012) 280–293

    Article  MathSciNet  MATH  Google Scholar 

  24. Peng S, Peng Y and Wang Z-Q, On elliptic systems with Sobolev critical growth, Calc. Var. (2016) 55, Art. No. 142

  25. Ruzhansky M and Suragan D, Hardy inequalities on homogeneous groups (2019) (Birkhäuser, Cham)

  26. Stein E M, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Volume 43 of Princeton Mathematical Series (1993) (Princeton, NJ: Princeton University Press), with the assistance of Timothy S Murphy, Monographs in Harmonic Analysis, III

  27. Vassilev D, Existence of solutions and regularity near the characteristic boundary for sub-Laplacian equation on Carnot Groups, Pacific J. Math 227(2) (2007) 361–397

    Article  MathSciNet  MATH  Google Scholar 

  28. Willem W, Minimax Theorems. Progress in Nonlinear Differential Equations and their Applications, vol. 24 (1996) (Boston, MA: Birkhäuser Boston Inc.)

  29. Wu T-F, On semilinear elliptic equations involving concave-convex nonlinearities and sign changing weight function, J. Math. Anal. Appl. 318 (2006) 253–270

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhang J, Sub-elliptic problems with multiple critical Sobolev–Hardy exponents on Carnot groups, Manuscript Math (2022) https://doi.org/10.1007/s00229-022-01406-x

    Article  Google Scholar 

  31. Zhang J and Hsu T-S, Nonlocal elliptic systems involving critical Sobolev–Hardy exponents and concave–convex nonlinearities, Taiwanese J. Math. 23(6) (2019) 1479–1510

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinguo Zhang.

Additional information

Communicated by K Sandeep.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J. Existence and multiplicity of positive solutions to sub-elliptic systems with multiple critical exponents on Carnot groups. Proc Math Sci 133, 10 (2023). https://doi.org/10.1007/s12044-023-00730-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12044-023-00730-w

Keywords

2010 Mathematics Subject Classification

Navigation