Skip to main content
Log in

On conjectures of Minkowski and Woods for \(\varvec{n=10}\)

  • Published:
Proceedings - Mathematical Sciences Aims and scope Submit manuscript

Abstract

Let \(\mathbb {L}\) be a lattice in n-dimensional Euclidean space \(\mathbb {R}^n\) reduced in the sense of Korkine and Zolotareff and having a basis of the form (\(A_1,0,0,\ldots ,0\)), \((a_{2,1},A_2,0,\ldots ,0),\ldots ,(a_{n,1},a_{n,2},\ldots ,a_{n,n-1},A_n)\). A famous conjecture of Woods in geometry of numbers asserts that if \(A_1A_2\ldots A_n = 1\) and \(A_i\le A_1\) for each i, then any closed sphere in \(\mathbb {R}^n\) of radius \(\sqrt{n/4}\) contains a point of \(\mathbb {L}.\) Together with a result of McMullen (J. Am. Math. Soc. 18  (2005) 711–734), the truth of Woods’ conjecture for a fixed n implies the long-standing classical conjecture of Minkowski on product of n non-homogeneous linear forms for that value of n. In an earlier paper (Proc. Indian Acad. Sci. (Math. Sci.) 126  (2016) 501–548), the authors proved Woods’ conjecture for \(n=9\). In this paper, we prove Woods’ conjecture and hence Minkowski’s conjecture for \(n=10\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Bambah R P, Dumir V C and Hans-Gill R J, Non-homogeneous problems: Conjectures of Minkowski and Watson, Number Theory, Trends in Mathematics (2000) (Basel: Birkhauser Verlag) pp. 15–41

  2. Bambah R P and Woods A C, On a theorem of Dyson, J. Number Theory 6 (1974) 422–433.

    Article  MathSciNet  Google Scholar 

  3. Bambah R P and Woods A C, Minkowski’s conjecture for \(n = 5\). A theorem of Skubenko, J. Number Theory 12 (1980) 27–48

    Article  MathSciNet  Google Scholar 

  4. Birch B J and Swinnerton-Dyer H P F, On the inhomogeneous minimum of the product of n linear forms, Mathematika 3 (1956) 25–39

    Article  MathSciNet  Google Scholar 

  5. Blichfeldt H F, The minimum values of positive quadratic forms in six, seven and eight variables, Math. Z. 39 (1934) 1–15

    Article  MathSciNet  Google Scholar 

  6. Cohn H and Elkies N, New upper bounds on sphere packings, I, Ann. Math. (2) 157(2) (2003) 689–714

    Article  MathSciNet  Google Scholar 

  7. Conway J H and Sloane N J A, Sphere packings, Lattices and groups, 2nd edition (1999) (Springer-Verlag)

  8. Gruber P, Convex and discrete geometry, Springer Grundlehren Series, vol. 336 (2007)

  9. Gruber P and Lekkerkerker C G, Geometry of Numbers, second edition (1987) (North Holland)

  10. Hans-Gill R J, Raka M and Sehmi R, On conjectures of Minkowski and Woods for \(n= 7\), J. Number Theory 129 (2009) 1011–1033.

  11. Hans-Gill R J, Raka M and Sehmi R, On conjectures of Minkowski and Woods for \(n=8\), Acta Arithmetica 147(4) (2011) 337–385

  12. Kathuria L, Hans-Gill R J and Raka M, On a question of Uri Shapira and Barak Weiss, Indian J. Pure Appl. Math. 46(3) (2015) 287–307

  13. Kathuria L and Raka M, On conjectures of Minkowski and Woods for \(n=9\), Proc. Indian Acad. Sci. (Math. Sci.) 126(4) (2016) 501–548

  14. Kathuria L and Raka M, Refined estimates on conjectures of Woods and Minkowski, J. Indian Math. Soc. 83(1–2) (2016) 61–85

  15. Korkine A and Zolotareff G, Sur les formes quadratiques, Math. Ann. 6 (1873) 366–389; Sur les formes quadratiques positives, Math. Ann. 11 (1877) 242–292

  16. McMullen C T, Minkowski’s conjecture, well rounded lattices and topological dimension, J. Amer. Math. Soc. 18 (2005) 711–734

    Article  MathSciNet  Google Scholar 

  17. Minkowski H, Über die Annährung an eine reelle Grösse durch rationale Zahlen, Math. Ann. 54 (1901) 91–124

    Article  MathSciNet  Google Scholar 

  18. Pendavingh R A and Van Zwam S H M, New Korkine–Zolotarev inequalities, SIAM J. Optim. 18(1) (2007) 364–378

    Article  MathSciNet  Google Scholar 

  19. Regev O, Shapira U and Weiss B, Counterexamples to a conjecture of Woods, Duke Math. J. 166 (2017) 2443–2446

    Article  MathSciNet  Google Scholar 

  20. Shapira U and Weiss B, On the stable lattices and the diagonal group, arXiv:1309.4025v1 [math.DS] 16 September 2013

  21. Woods A C, The densest double lattice packing of four spheres, Mathematika 12 (1965) 138–142

    Article  MathSciNet  Google Scholar 

  22. Woods A C, Lattice coverings of five space by spheres, Mathematika 12 (1965) 143–150.

    Article  MathSciNet  Google Scholar 

  23. Woods A C, Covering six space with spheres, J. Number Theory 4 (1972) 157–180

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The second author acknowledges the support by CSIR, Sanction No. ES/21(1042)/EMR-II.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leetika Kathuria.

Additional information

Communicated by B Sury.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kathuria, L., Raka, M. On conjectures of Minkowski and Woods for \(\varvec{n=10}\). Proc Math Sci 132, 45 (2022). https://doi.org/10.1007/s12044-022-00679-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12044-022-00679-2

Keywords

Mathematics Subject Classification

Navigation