Skip to main content
Log in

Müntz–Szàsz analogues for compact extensions of Heisenberg groups

  • Published:
Proceedings - Mathematical Sciences Aims and scope Submit manuscript

Abstract

Given a Müntz–Szàsz sequence of positive real numbers \((\lambda _k)_k\) and a bounded interval \(I\subset {\mathbb {R}}\), Müntz–Szàsz theorem for completeness of the monomials \(\{x^{\lambda _k}\}_k\) in \(L^2(I)\) can be extended to a class of compact extensions of Heisenberg groups. The idea is to define infinitely many coordinate functions of generic unitary representations which are shown to be compactly supported and whose Fourier transforms extend analytically on the complex plane with suitable exponential domination. The representation theory and a Plancherel formula of reducible generic representations play an important role in the proofs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almira J M, Müntz type Theorems I, Surv. Approx. Theory 3 (2007) 152–194

    MathSciNet  MATH  Google Scholar 

  2. Azaouzi S, Baklouti A and Ben Ayed S, Variants of Müntz–Szàsz analogs for Euclidean spin groups, Math. Notes 98(3) (2015) 14–28

    MATH  Google Scholar 

  3. Baklouti A, Chaabouni M and Lahiani R, Müntz–Szàsz theorems for connected nilpotent lie groups, Preprint

  4. Borwein P and Erdélyi T, The full Müntz theorem in \(C[0, 1]\) and \(L^1[0, 1]\), J. London Math. Soc. 54 (1996) 102–110

    Article  MathSciNet  Google Scholar 

  5. Cook D C, Müntz–Szàsz theorems for nilpotent lie groups, J. Funct. Anal. 157 (1998) 394–412

    Article  MathSciNet  Google Scholar 

  6. Erdélyi T and Johnson W B, The full Müntz theorem in \(L^p([0, 1])\) for \(0<p<\infty \), J. Anal. Math. 84 (2001) 145–172

  7. Folland G B, Harmonic Analysis in Phase Space (1989) (Princeton, New Jersey: Princeton University Press)

    Book  Google Scholar 

  8. Hilgert J and Neeb K-H, Structure and Geometry of Lie Groups, Springer Monographs in Mathematics

  9. Kleppner A and Lipsman R L, The Plancheral formula for group extentions, Ann. Sci. Éc. Norm. Super. 5(4) (1972) 459–516

    Article  Google Scholar 

  10. Kleppner A and Lipsman R L, The Plancheral formula for group extentions II, Ann. Sci. Éc. Norm. Super. 6(4) (1973) 103–132

    Article  Google Scholar 

  11. Lakshmi R and Thangavelu S, Revisiting the Fourier transform on the Heisenberg group, Publ. Mat. 58 (2014) 47–63

    Article  MathSciNet  Google Scholar 

  12. Lemarié P-G and Meyer Y, Ondelettes et bases hilbertiennes, Rev. Math. Iberoam. 2 (1986) 1–18

    Article  MathSciNet  Google Scholar 

  13. Mackey G W, The Theory of Unitary Group Representations (1976) (Chicago University Press)

  14. Müntz Ch H, Uber den Approximationsatz von Weierstrass (1914) (H. A. Schwartz Festschrift, Berlin) pp. 303–312

    Google Scholar 

  15. Rathnakumar P K, Rawat R and Thangavelu S, A restriction theorem for the Heisenberg motion group, Studia Math. 126(1) (1997) 1–12

    MathSciNet  MATH  Google Scholar 

  16. Szàsz O, Uber die Approximation steliger Funktionen durch lineare Aggregate von Potenzen, Math. Ann. 77 (1916) 482–496

    Article  MathSciNet  Google Scholar 

  17. Thangavelu S, Harmonic Analysis on the Heisenberg Group, Progress in Mathematics, Volume 159 (1998)

Download references

Acknowledgements

The authors are deeply thankful to the referee for the careful reading of the first version of this article. The valuable suggestions have been followed in revising the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Baklouti.

Additional information

Communicating Editor: Parameswaran Sankaran

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baklouti, A., Ayed, S.B. Müntz–Szàsz analogues for compact extensions of Heisenberg groups. Proc Math Sci 131, 27 (2021). https://doi.org/10.1007/s12044-021-00617-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12044-021-00617-8

Keywords

Mathematics Subject Classification

Navigation