Akamine S, Causal characters of zero mean curvature surfaces of Riemann type in Lorentz-Minkowski 3-space, Kyushu J. Math. 71 (2017) 211–249
MathSciNet
Article
Google Scholar
Akamine S, Behavior of the Gaussian curvature of timelike minimal surfaces with singularities, to appear in Hokkaido Math. J, arXiv:1701.00238
Born M and Infeld L, Foundations of the New Field Theory, Proc. R. Soc. London Ser. A. 144 852 (1934) 425–451
Article
Google Scholar
Calabi E, Examples of Bernstein problems for some nonlinear equations, in Global Analysis (Proc. Sympos. Pure Math., Vol. XV, Berkeley, CA, 1968), Amer. Math. Soc., Providence, RI (1970) pp. 223–230
Clelland J N, Totally quasi-umbilic timelike surfaces in \({\mathbb{R}}^{1,2}\), Asian J. Math. 16 (2012) 189–208
MathSciNet
Article
Google Scholar
Dey R, The Weierstrass–Enneper representation using hodographic coordinates on a minimal surface, Proc. Indian Acad. Sci. (Math. Sci.) 113(2) (2003) 189–193
MathSciNet
Article
Google Scholar
Dey R and Singh R K, Born–Infeld solitons, maximal surfaces, Ramanujan’s identities, Arch. Math. 108(5) (2017) 527–538
MathSciNet
Article
Google Scholar
Estudillo F J M and Romero A, Generalized maximal surfaces in Lorentz–Minkowski space \({\mathbb{L}}^3\), Math. Proc. Cambridge Phil. Soc. 111 (1992) 515–524
Article
Google Scholar
Fernández I, López F J and Souam R, The space of complete embedded maximal surfaces with isolated singularities in the \(3\)-dimensional Lorentz-Minkowski space, Math. Ann. 332 (2005) 605–643
MathSciNet
Article
Google Scholar
Fujimori S, Kim Y W, Koh S-E, Rossman W, Shin H, Takahashi H, Umehara M, Yamada K and Yang S-D, Zero mean curvature surfaces in \({\mathbb{L}}^3\) containing a light-like line, C.R. Acad. Sci. Paris. Ser. I 350 (2012) 975–978
Article
Google Scholar
Fujimori S, Kim Y W, Koh S-E, Rossman W, Shin H, Umehara M, Yamada K and Yang S-D, Zero mean curvature surfaces in Lorenz-Minkowski \(3\)-space which change type across a light-like line, Osaka J. Math. 52 (2015) 285–297
MathSciNet
MATH
Google Scholar
Fujimori S, Kim Y W, Koh S E, Rossman W, Shin H, Umehara M, Yamada K and Yang S-D, Zero mean curvature surfaces in Lorentz-Minkowski \(3\)-space and \(2\)-dimensional fluid mechanics, Math. J. Okayama Univ. 57 (2015) 173–200
MathSciNet
MATH
Google Scholar
Gibbons G W and Ishibashi A, Topology and signature in braneworlds, Class. Quantum Gravit. 21 (2004) 2919–2935
MathSciNet
Article
Google Scholar
Gu C, The extremal surfaces in the \(3\)-dimensional Minkowski space, Acta. Math. Sinica 1 (1985) 173–180
MathSciNet
Article
Google Scholar
Kamien R D, Decomposition of the height function of Scherk’s first surface, Appl. Math. Lett. 14 (2001) 797–800
MathSciNet
Article
Google Scholar
Kim Y W, Koh S-E, Shin H and Yang S-D, Space-like maximal surfaces, time-like minimal surfaces, and Björling representation formulae, J. Korean Math. Soc. 48 (2011) 1083–1100
MathSciNet
Article
Google Scholar
Kim Y W and Yang S-D, Prescribing singularities of maximal surfaces via a singular Björling representation formula, J. Geom. Phys. 57 (2007) 2167–2177
MathSciNet
Article
Google Scholar
Klyachin V A, Zero mean curvature surfaces of mixed type in Minkowski space, Izv. Math. 67 (2003) 209–224
MathSciNet
Article
Google Scholar
Kobayashi O, Maximal surfaces with cone-like singularities, J. Math. Soc. Japan 36 (1984) 609–617
MathSciNet
Article
Google Scholar
Lee H, Extension of the duality between minimal surfaces and maximal surfaces, Geom. Dedicata 151 (2011) 373–386
MathSciNet
Article
Google Scholar
López R, Time-like surfaces with constant mean curvature in Lorentz three-space, Tohoku Math. J. (2) 52(4) (2000) 515–532
MathSciNet
Article
Google Scholar
Mallory M, Van Gorder R A and Vajravelu K, Several classes of exact solutions to the \(1+1\) Born-Infeld equation, Commun. Nonlinear Sci. Number. Simul. 19 (2014) 1669–1674
MathSciNet
Article
Google Scholar
Umehara M and Yamada K, Maximal surfaces with singularities in Minkowski space, Hokkaido Math. J. 35 (2006) 13–40
MathSciNet
Article
Google Scholar
Umehara M and Yamada K, Surfaces with light-like points in Lorentz–Minkowski space with applications, in: Lorentzian Geometry and Related Topics, Springer Proc. Math Statics (2017) vol. 21, pp. 253–273
Wick G C, Properties of Bethe–Salpeter wave functions, Phys. Rev. 96(4) (1954) 1124–1134
MathSciNet
Article
Google Scholar