Skip to main content

Wick rotations of solutions to the minimal surface equation, the zero mean curvature equation and the Born–Infeld equation

Abstract

In this paper, we investigate relations between solutions to the minimal surface equation in Euclidean 3-space \({\mathbb {E}}^3\), the zero mean curvature equation in the Lorentz–Minkowski 3-space \({\mathbb {L}}^3\) and the Born–Infeld equation under Wick rotations. We prove that the existence conditions of real solutions and imaginary solutions after Wick rotations are written by symmetries of solutions, and reveal how real and imaginary solutions are transformed under Wick rotations. We also give a transformation method for zero mean curvature surfaces containing lightlike lines with some symmetries. As an application, we give new correspondences among some solutions to the above equations by using the non-commutativity between Wick rotations and isometries in the ambient space.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Akamine S, Causal characters of zero mean curvature surfaces of Riemann type in Lorentz-Minkowski 3-space, Kyushu J. Math. 71 (2017) 211–249

    MathSciNet  Article  Google Scholar 

  2. Akamine S, Behavior of the Gaussian curvature of timelike minimal surfaces with singularities, to appear in Hokkaido Math. J, arXiv:1701.00238

  3. Born M and Infeld L, Foundations of the New Field Theory, Proc. R. Soc. London Ser. A. 144 852 (1934) 425–451

    Article  Google Scholar 

  4. Calabi E, Examples of Bernstein problems for some nonlinear equations, in Global Analysis (Proc. Sympos. Pure Math., Vol. XV, Berkeley, CA, 1968), Amer. Math. Soc., Providence, RI (1970) pp. 223–230

  5. Clelland J N, Totally quasi-umbilic timelike surfaces in \({\mathbb{R}}^{1,2}\), Asian J. Math. 16 (2012) 189–208

    MathSciNet  Article  Google Scholar 

  6. Dey R, The Weierstrass–Enneper representation using hodographic coordinates on a minimal surface, Proc. Indian Acad. Sci. (Math. Sci.) 113(2) (2003) 189–193

    MathSciNet  Article  Google Scholar 

  7. Dey R and Singh R K, Born–Infeld solitons, maximal surfaces, Ramanujan’s identities, Arch. Math. 108(5) (2017) 527–538

    MathSciNet  Article  Google Scholar 

  8. Estudillo F J M and Romero A, Generalized maximal surfaces in Lorentz–Minkowski space \({\mathbb{L}}^3\), Math. Proc. Cambridge Phil. Soc. 111 (1992) 515–524

    Article  Google Scholar 

  9. Fernández I, López F J and Souam R, The space of complete embedded maximal surfaces with isolated singularities in the \(3\)-dimensional Lorentz-Minkowski space, Math. Ann. 332 (2005) 605–643

    MathSciNet  Article  Google Scholar 

  10. Fujimori S, Kim Y W, Koh S-E, Rossman W,  Shin H, Takahashi H,  Umehara M,  Yamada K and  Yang S-D, Zero mean curvature surfaces in \({\mathbb{L}}^3\) containing a light-like line, C.R. Acad. Sci. Paris. Ser. I 350 (2012) 975–978

    Article  Google Scholar 

  11. Fujimori S, Kim Y W, Koh S-E, Rossman W, Shin H, Umehara M, Yamada K and Yang S-D, Zero mean curvature surfaces in Lorenz-Minkowski \(3\)-space which change type across a light-like line, Osaka J. Math. 52 (2015) 285–297

    MathSciNet  MATH  Google Scholar 

  12. Fujimori S, Kim Y W, Koh S E, Rossman W, Shin H, Umehara M, Yamada K and Yang S-D, Zero mean curvature surfaces in Lorentz-Minkowski \(3\)-space and \(2\)-dimensional fluid mechanics, Math. J. Okayama Univ. 57 (2015) 173–200

    MathSciNet  MATH  Google Scholar 

  13. Gibbons G W and Ishibashi A, Topology and signature in braneworlds, Class. Quantum Gravit. 21 (2004) 2919–2935

    MathSciNet  Article  Google Scholar 

  14. Gu C, The extremal surfaces in the \(3\)-dimensional Minkowski space, Acta. Math. Sinica 1 (1985) 173–180

    MathSciNet  Article  Google Scholar 

  15. Kamien R D, Decomposition of the height function of Scherk’s first surface, Appl. Math. Lett. 14 (2001) 797–800

    MathSciNet  Article  Google Scholar 

  16. Kim Y W, Koh S-E, Shin H and Yang S-D, Space-like maximal surfaces, time-like minimal surfaces, and Björling representation formulae, J. Korean Math. Soc. 48 (2011) 1083–1100

    MathSciNet  Article  Google Scholar 

  17. Kim Y W and Yang S-D, Prescribing singularities of maximal surfaces via a singular Björling representation formula, J. Geom. Phys. 57 (2007) 2167–2177

    MathSciNet  Article  Google Scholar 

  18. Klyachin V A, Zero mean curvature surfaces of mixed type in Minkowski space, Izv. Math. 67 (2003) 209–224

    MathSciNet  Article  Google Scholar 

  19. Kobayashi O, Maximal surfaces with cone-like singularities, J. Math. Soc. Japan 36 (1984) 609–617

    MathSciNet  Article  Google Scholar 

  20. Lee H, Extension of the duality between minimal surfaces and maximal surfaces, Geom. Dedicata 151 (2011) 373–386

    MathSciNet  Article  Google Scholar 

  21. López R, Time-like surfaces with constant mean curvature in Lorentz three-space, Tohoku Math. J. (2) 52(4) (2000) 515–532

    MathSciNet  Article  Google Scholar 

  22. Mallory M, Van Gorder R A and Vajravelu K, Several classes of exact solutions to the \(1+1\) Born-Infeld equation, Commun. Nonlinear Sci. Number. Simul. 19 (2014) 1669–1674

    MathSciNet  Article  Google Scholar 

  23. Umehara M and Yamada K, Maximal surfaces with singularities in Minkowski space, Hokkaido Math. J. 35 (2006) 13–40

    MathSciNet  Article  Google Scholar 

  24. Umehara M and Yamada K, Surfaces with light-like points in Lorentz–Minkowski space with applications, in: Lorentzian Geometry and Related Topics, Springer Proc. Math Statics (2017) vol. 21, pp. 253–273

  25. Wick G C, Properties of Bethe–Salpeter wave functions, Phys. Rev. 96(4) (1954) 1124–1134

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

This study was initiated during the authors stay at the University of Granada in April 2017. They would like to thank Professor Rafael López for his invitation and hospitality. The first author was supported by Grant-in-Aid for JSPS Fellows Number 15J06677.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shintaro Akamine.

Additional information

Communicating Editor: B V Rajarama Bhat

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Akamine, S., Singh, R.K. Wick rotations of solutions to the minimal surface equation, the zero mean curvature equation and the Born–Infeld equation. Proc Math Sci 129, 35 (2019). https://doi.org/10.1007/s12044-019-0479-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12044-019-0479-7

Keywords

  • Minimal surface
  • zero mean curvature surface
  • solution to the Born–Infeld equation
  • Wick rotation

2010 Mathematics Subject Classification

  • 53A10
  • 58J72
  • 53B30