Skip to main content
Log in

Stabilization of the higher order nonlinear Schrödinger equation with constant coefficients

  • Published:
Proceedings - Mathematical Sciences Aims and scope Submit manuscript

Abstract

We study the internal stabilization of the higher order nonlinear Schrödinger equation with constant coefficients. Combining multiplier techniques, a fixed point argument and nonlinear interpolation theory, we can obtain the well-posedness. Then, applying compactness arguments and a unique continuation property, we prove that the solution of the higher-order nonlinear Schrödinger equation with a damping term decays exponentially.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agrawal G P, Nonlinear fiber optics, 3rd ed. (2001) (San Diego: Academic Press)

    MATH  Google Scholar 

  2. Bisognin E, Bisognin V and Vera Villagrán O, Stabilization of solutions to higher-order nonlinear Schrödinger equation with localized damping, Electron. J. Differ. Equ., 6 (2007) 18 pp

  3. Capistrano-Filho R, Pazoto A and Rosier L, Internal controllability of the Korteweg–de Vries equation on a bounded domain, ESAIM Control Optim. Calc. Var., 21 (2015) 1076–1107

    Article  MathSciNet  MATH  Google Scholar 

  4. Cavalcanti M M, Domingos Cavalcanti V N, Soriano J and Natali F, Qualitative aspects for the cubic nonlinear Schrödinger equations with localized damping: exponential and polynomial stabilization, J. Diff. Equat., 248 (2010) 2955–2971

    Article  MATH  Google Scholar 

  5. Ceballos V, Pavez F R, Villagrán V and Paulo O, Exact boundary controllability for higher order nonlinear Schrödinger equations with constant coefficients, Electron. J. Differ. Equ., 122 (2005) 1–31

    MATH  Google Scholar 

  6. Cerpa E, Exact controllability of a nonlinear Korteweg-de Vries equation on a critical spatial domain, SIAM J. Control Optim., 46 (2007) 877–899

    Article  MathSciNet  MATH  Google Scholar 

  7. Cerpa E and Crépeau E, Boundary controllability for the nonlinear Korteweg–de Vries equation on any critical domain, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009) 457–475

    Article  MathSciNet  MATH  Google Scholar 

  8. Chu J, Coron J M and Shang P, Asymptotic stability of a nonlinear Korteweg–de Vries equation with critical lengths, J. Differ. Equ., 259 (2015) 4045–4085

    Article  MathSciNet  MATH  Google Scholar 

  9. Coron J M and Crépeau E, Exact boundary controllability of a nonlinear KdV equation with critical lengths, J. Eur. Math. Soc., 6 (2004) 367–398

    Article  MathSciNet  MATH  Google Scholar 

  10. Fabio N, Exponential stabilization for the nonlinear Schrödinger equation with localized damping, J Dyn. Control Syst., 21 (2015) 461–474

    Article  MathSciNet  MATH  Google Scholar 

  11. Hasegawa A and Kodama Y, Higher order pulse propagation in a monomode dielectric guide, IEEE J. Quant. Elect., 23 (1987) 510–524

    Article  Google Scholar 

  12. Kivshar Y S and Agrawal G P, optical solitons: from fibers to photonic crystals (2003) (San Diego: Academic Press)

    Google Scholar 

  13. Kodama Y, Optical solitons in a monomode fiber, J. Phys. Stat., 39 (1985) 596–614

    Article  MathSciNet  Google Scholar 

  14. Laurent C, Global controllability and stabilization for the nonlinear Schrödinger equation on an interval, ESAIM Control Optim Calc Var., 16 (2010) 356–379

    Article  MathSciNet  MATH  Google Scholar 

  15. Laurent C, Rosier L and Zhang B-Y, Control and stabilization of the Korteweg–de Vries equation on a periodic domain, Comm. Partial Differ. Equ. 35 (2010) 707–744

    Article  MathSciNet  MATH  Google Scholar 

  16. Pazoto A F, Unique continuation and decay for the Korteweg–de Vries equation with localized damping, ESAIM Control Optim. Calc. Var., 11 (2005) 473–486

    Article  MathSciNet  MATH  Google Scholar 

  17. Perla Menzala G, Vasconcellos C F and Zuazua E, Stabilization of the Korteweg–de Vries equation with localized damping, Quart. Appl. Math., 60 (2002) 111–129

    Article  MathSciNet  MATH  Google Scholar 

  18. Rosier L, Exact boundary controllability for the Korteweg-de Vries equation on a bonded domain, ESAIM Control Optim. Calc. Var., 2 (1997) 33–55

    Article  MathSciNet  MATH  Google Scholar 

  19. Rosier L and Zhang B-Y, Global stabilization of the generalized Korteweg–de Vries equation posed on a finite domain, SIAM J. Control Optim., 45 (2006) 927–956

    Article  MathSciNet  MATH  Google Scholar 

  20. Simon J, Compact sets in the space \(L^{p}(0,T;B)\), Ann. Mat. Pura Appl., 4 (1987) 65–96

    MATH  Google Scholar 

  21. Tartar L, Interpolation non linéaire et régularité, J. Funct. Anal., 9 (1972) 469–489

    Article  MATH  Google Scholar 

  22. Tian B and Gao Y T, Variable-coefficient higher-order nonlinear Schrödinger model in optical fibers: New transformation with burstons, brightons and symbolic computation, Phys. Lett. A, 359 (2006) 241–248

    Article  Google Scholar 

Download references

Acknowledgements

The author would sincerely like to thank the referees for their interesting comments. He also thanks Prof. Yong Li for many useful suggestions and help. This work was supported by NSFC Grant (11701078), China Post-doctoral Science Foundation (2017M611292), the Fundamental Research Funds for the Central Universities (2412017QD002), NSFC Grants (11626043 and 11601073).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mo Chen.

Additional information

Communicating Editor: S Kesavan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M. Stabilization of the higher order nonlinear Schrödinger equation with constant coefficients. Proc Math Sci 128, 39 (2018). https://doi.org/10.1007/s12044-018-0410-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12044-018-0410-7

Keywords

2010 Mathematics Subject Classification

Navigation