Advertisement

On 3-way combinatorial identities

  • A K Agarwal
  • Megha Goyal
Article
  • 28 Downloads

Abstract

In this paper, we provide combinatorial meanings to two generalized basic series with the aid of associated lattice paths. These results produce two new classes of infinite 3-way combinatorial identities. Five particular cases are also discussed. These particular cases provide new combinatorial versions of Göllnitz–Gordon identities and Göllnitz identity. Seven q-identities of Slater and five q-identities of Rogers are further explored using the same combinatorial object. These results are an extension of the work of Goyal and Agarwal (Utilitas Math. 95 (2014) 141–148), Agarwal and Rana (Utilitas Math. 79 (2009) 145–155), and Agarwal (J. Number Theory 28 (1988) 299–305).

Keywords

Basic series n-color partitions lattice paths associated lattice paths combinatorial identities 

2010 Mathematics Subject Classification

05A15 05A17 11P81 

References

  1. 1.
    Agarwal A K, Rogers–Ramanujan identities for \(n\)-color partitions, J. Number Theory 28 (1988) 299–305MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Agarwal A K, Lattice paths and \(n\)-color partitions, Utilitas Mathematica 53 (1998) 71–80MathSciNetzbMATHGoogle Scholar
  3. 3.
    Agarwal A K and Andrews G E, Rogers–Ramanujan identities for partitions with ‘\(N\) copies of \(N\)’, J. Combin. Theory Ser. A.  45(1) (1987) 40–49MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Agarwal A K and Bressoud D M, Lattice paths and multiple basic hypergeometric series, Pac. J. Math. 136(2) (1989) 209–228MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Agarwal A K and Goyal M, Lattice paths and Rogers identities, Open J. Discrete Math. 1 (2011) 89–95MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Agarwal A K and Goyal M, New partition theoretic interpretations of Rogers–Ramanujan identities, Int. J. Combin. (2012) 6 pages,  https://doi.org/10.1155/2012/409505
  7. 7.
    Agarwal A K and Rana M, New combinatorial versions of Göllnitz–Gordon identities, Utilitas Mathematica 79 (2009) 145–155MathSciNetzbMATHGoogle Scholar
  8. 8.
    Agarwal A K and Rana M, On an extension of a combinatorial identity, Proc. Indian Acad. Sci. (Math. Sci.) 119(1) (2009) 1–7MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Anand S and Agarwal A K, A new class of lattice paths and partitions with \(n\) copies of \(n\), Proc. Indian Acad. Sci. (Math. Sci.) 122(1) (2012) 23–39MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Andrews G E, An introduction to Ramanujan’s “lost” notebook, Am. Math. Mon. 86 (1979) 89–108MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Connor W G, Partition theorems related to some identities of Rogers and Watson, Trans. Am. Math. Soc. 214 (1975) 95–111MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Ganesan Ghurumuruhan, Multiplicity of summands in the random partitions of an integer, Proc. Indian Acad. Sci. (Math. Sci.) 123(1) (2013) 101–143MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Göllnitz H, Einfache partitionen (unpublished), Diplomarbeit W.S., Gotttingen (1960) 65Google Scholar
  14. 14.
    Göllnitz H, Partitionen unit differenzenbedingun-gen, J. Reine Angew. Math. 225 (1967) 154–190MathSciNetzbMATHGoogle Scholar
  15. 15.
    Gordon B, Some continued fractions of the Rogers–Ramanujan type, Duke J. Math. 32 (1965) 741–748MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Goyal M and Agarwal A K, Further Rogers–Ramanujan identities for \(n\)-color partitions, Utilitas Mathematica 95 (2014) 141–148MathSciNetzbMATHGoogle Scholar
  17. 17.
    Goyal M and Agarwal A K, On a new class of combinatorial identities, ARS Combin. 127 (2016) 65–77MathSciNetzbMATHGoogle Scholar
  18. 18.
    Mansour Toufik and Shattuck Mark, A statistic on \(n\)-color compositions and related sequences, Proc. Indian Acad. Sci. (Math. Sci.) 124(2) (2014) 127–140MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Slater L J, Further identities of the Rogers–Ramanujan type, Proc. Lond. Math. Soc. 54 (1952) 147–167MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Subbarao M V, Some Rogers–Ramanujan type partition theorems, Pac. J. Math. 120 (1985) 431–435MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Center for Advanced Study in MathematicsPanjab UniversityChandigarhIndia
  2. 2.Department of Basic and Applied SciencesUniversity College of Engineering, Punjabi UniversityPatialaIndia

Personalised recommendations