Skip to main content
Log in

Volume inequalities for Orlicz mean bodies

  • Published:
Proceedings - Mathematical Sciences Aims and scope Submit manuscript

Abstract

In this paper, the Orlicz mean body H ϕ K of a convex body K is introduced. Using the notion of shadow system, we establish a sharp lower estimate for the volume ratio of H ϕ K and K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abardia J, Difference bodies in complex vector spaces, J. Funct. Anal. 263 (2012) 3588–3603

    Article  MATH  MathSciNet  Google Scholar 

  2. Bandle C, Isoperimetric inequalities and applications (1980) (Pitman, London)

  3. Campi S and Gronchi P, The L p-Busemann–Petty centroid inequality, Adv. Math. 167 (2002) 128–141

    Article  MATH  MathSciNet  Google Scholar 

  4. Campi S and Gronchi P, On the reverse L p-Busemann–Petty centroid inequality, Mathematika 49 (2002) 1–11

    Article  MATH  MathSciNet  Google Scholar 

  5. Campi S and Gronchi P, On volume product inequalities for convex sets, Proc. Amer. Math. Soc. 134 (2006) 2393–2402

    Article  MATH  MathSciNet  Google Scholar 

  6. Campi S and Gronchi P, Volume inequalities for L p-zonotopes, Mathematika 53 (2006) 71–80

    Article  MATH  MathSciNet  Google Scholar 

  7. Fradelizi M, Meyer M and Zvavitch A, An application of shadow systems to Mahlers conjecture, Discrete Comput. Geom. 48 (2012) 721–734

    Article  MATH  MathSciNet  Google Scholar 

  8. Gardner R J, Geometric tomography, in: Encyclopedia of mathematics and its applications (2006) (Cambridge: Cambridge University Press) vol. 58, 2nd edn

  9. Gardner R J, Hug D and Weil W, The Orlicz-Brunn-Minkowski theory: A general framework, additions, and inequalities, J. Differential Geom., in press

  10. Gardner R J and Zhang G, Affine inequalities and radial mean bodies, Amer. J. Math 120 (1998) 505–528

    Article  MATH  MathSciNet  Google Scholar 

  11. Gruber P M, Convex and discrete geometry, Grundlehren Math. Wiss. (2007) (Berlin: Springer) vol. 336

  12. Haberl C, Lutwak E, Yang D and Zhang G, The even Orlicz Minkowski problem, Adv. Math. 224 (2010) 2485–2510

    Article  MATH  MathSciNet  Google Scholar 

  13. Haberl C and Schuster F, Asymmetric affine L p Sobolev inequalities, J. Funct. Anal. 257 (2009) 641–658

    Article  MATH  MathSciNet  Google Scholar 

  14. Haberl C and Schuster F, General L p affine isoperimetric inequalities, J. Differential Geom. 83 (2009) 1–26

    MATH  MathSciNet  Google Scholar 

  15. Haberl C, Schuster F E and Xiao J, An asymmetric affine Pólya–Szegő principle, Math. Ann. 352 (2012) 517–542

    Article  MATH  MathSciNet  Google Scholar 

  16. Huang Q and He B, On the Orlicz Minkowski problem for polytopes, Discrete Comput. Geom. 48 (2012) 281–297

    Article  MATH  MathSciNet  Google Scholar 

  17. Kawohl B, Rearrangements and convexity of level sets in PDE, Lecture Notes in Math (1985) (New York: Springer-Verlag) vol. 1150

  18. Li A and Leng G, A new proof of the Orlicz Busemann–Petty centroid inequality, Proc. Amer. Math. Soc. 139 (2011) 1473–1481

    Article  MATH  MathSciNet  Google Scholar 

  19. Ludwig M, Minkowski valuations, Trans. Amer. Math. Soc. 357 (2005) 4191–4213

    Article  MATH  MathSciNet  Google Scholar 

  20. Ludwig M and Reitzner M, A classification of S L(n) invariant valuations, Ann. Math. 172 (2010) 1223–1271

    Article  MathSciNet  Google Scholar 

  21. Lutwak E, The Brunn–Minkowski–Firey theory. I. Mixed volumes and the Minkowski problem, J. Differential Geom. 38 (1993) 131–150

    MATH  MathSciNet  Google Scholar 

  22. Lutwak E, The Brunn–Minkowski–Firey theory. II, Affine and geominimal surface areas, Adv. Math. 118 (1996) 244–294

    Article  MATH  MathSciNet  Google Scholar 

  23. Lutwak E, Yang D and Zhang G, L p affine isoperimetric inequalities, J. Differential Geom. 56 (2000) 111–132

    MATH  MathSciNet  Google Scholar 

  24. Lutwak E, Yang D and Zhang G, Orlicz projection bodies, Adv. Math. 223 (2010) 220–242

    Article  MATH  MathSciNet  Google Scholar 

  25. Lutwak E, Yang D and Zhang G, Orlicz centroid bodies, J. Differential Geom. 84 (2010) 365–387

    MATH  MathSciNet  Google Scholar 

  26. Meyer M and Reisner S, Shadow systems and volumes of polar convex bodies, Mathematika 53 (2006) 129–148

    Article  MATH  MathSciNet  Google Scholar 

  27. Parapatits L, S L(n)-contravariant L p -Minkowski valuations, Trans. Amer. Math. Soc. 366 (2014) 1195–1211

    Article  MATH  MathSciNet  Google Scholar 

  28. Parapatits L, S L(n)-covariant L p -Minkowski valuations, J. Lond. Math. Soc. 89 (2014) 397–414

    Article  MATH  MathSciNet  Google Scholar 

  29. Petty C M, Ellipsoids, in: Convexity and its applications (eds) P M Gruber and J M Wills (1983) (Birkhäuser, Basel) pp. 264–276

  30. Rogers C A and Shephard G C, Convex bodies associated with a given convex body, J. London Math. Soc. 33 (1958) 270–281

    Article  MATH  MathSciNet  Google Scholar 

  31. Rogers C A and Shephard G C, Some extremal problems for convex bodies, Mathematika 5 (1958) 93–102

    Article  MATH  MathSciNet  Google Scholar 

  32. Schneider R, Convex bodies: TheBrunn–Minkowski theory (1993) (Cambridge: Cambridge University Press)

  33. Schuster F E and Weberndorfer M, Volume inequalities for asymmetric Wulff shapes, J. Differential Geom. 92 (2012) 263–283

    MATH  MathSciNet  Google Scholar 

  34. Shephard G C, Shadow systems of convex bodies, Israel J. Math. 2 (1964) 229–236

    Article  MATH  MathSciNet  Google Scholar 

  35. Steiner J, Einfacher Beweis der isoperimetrischen Hauptsätze, J. Reine Angew Math 18 (1838) 281–296 and Gesammelte Werke (1882) (Reimer, Berlin) vol. 2, pp. 77–91

    Article  MATH  Google Scholar 

  36. Wang G, Leng G and Huang Q, Volume inequalities for Orlicz zonotopes, J. Math. Anal. Appl. 391 (2012) 183–189

    Article  MATH  MathSciNet  Google Scholar 

  37. Weberndorfer M, Shadow systems of asymmetric L p zonotopes, Adv. Math. 240 (2013) 613–635

    Article  MATH  MathSciNet  Google Scholar 

  38. Zhang G, Restricted chord projection and affine inequalities, Geom. Dedicata 39 (1991) 213–222

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgement

The authors are grateful to the anonymous referees for their careful reading and many valuable suggestions, which has improved the paper greatly. The authors are supported in part by the National Natural Science Foundation of China (11271244) and in part by Science and Technology Key Project of the Education Department of Henan Province (14A110005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to CHANGMIN DU.

Additional information

Communicating Editor: B V Rajarama Bhat

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DU, C., GUO, L. & LENG, G. Volume inequalities for Orlicz mean bodies. Proc Math Sci 125, 57–70 (2015). https://doi.org/10.1007/s12044-015-0214-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12044-015-0214-y

Keywords

2010 Mathematics Subject Classification

Navigation