Skip to main content
Log in

The cohomology of orbit spaces of certain free circle group actions

  • Published:
Proceedings - Mathematical Sciences Aims and scope Submit manuscript

Abstract

Suppose that \(G =\mathbb{S}^1\) acts freely on a finitistic space X whose (mod p) cohomology ring is isomorphic to that of a lens space \(L^{2m-1}(p;q_1,\ldots,q_m)\) or \(\mathbb{S}^1\times \mathbb{C}P^{m-1}\). The mod p index of the action is defined to be the largest integer n such that α n ≠ 0, where \(\alpha \,\epsilon\, H^2(X/G;\mathbb{Z}_p)\) is the nonzero characteristic class of the \(\mathbb{S}^1\)-bundle \(\mathbb{S}^1\hookrightarrow X\rightarrow X/G\). We show that the mod p index of a free action of G on \(\mathbb{S}^1\times \mathbb{C}P^{m-1}\) is p − 1, when it is defined. Using this, we obtain a Borsuk–Ulam type theorem for a free G-action on \(\mathbb{S}^1\times \mathbb{C}P^{m-1}\). It is note worthy that the mod p index for free G-actions on the cohomology lens space is not defined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bredon G E, Introduction to compact transformation groups (Academic Press) (1972)

  2. Browder W and Livesay G R, Fixed point free involutions on homotopy spheres, Bull. Am. Math. Soc. 73 (1967) 242–245

    Article  MathSciNet  MATH  Google Scholar 

  3. Dotzel R M, Singh Tej B and Tripathi S P, The cohomology rings of the orbit spaces of free transformation groups of the product of two spheres, Proc. Am. Math. Soc. 129 (2000) 921–230

    Google Scholar 

  4. Jaworowski Jan, The index of free circle actions in lens spaces, Topology and its Applications 123 (2002) 125–129

    Article  MathSciNet  MATH  Google Scholar 

  5. McCleary J, Users guide to spectral sequences (Publish or Perish) (1985)

  6. Myers R, Free involutions on lens spaces, Topology 20 (1981) 313–318

    Article  MathSciNet  MATH  Google Scholar 

  7. Rice P M, Free actions of ℤ4 on \(\mathbb{S}^3\), Duke Math. J. 36 (1969) 749–751

    Article  MathSciNet  MATH  Google Scholar 

  8. Ritter Gerhard X, Free ℤ8 actions on \(\mathbb{S}^3\), Trans. Am. Math. Soc. 181 (1973) 195–212

    MATH  Google Scholar 

  9. Ritter Gerhard X, Free actions of cyclic groups of order 2n on \(\mathbb{S}^1\times \mathbb{S}^2\), Proc. Am. Math. Soc. 46 (1974) 137–140

    MATH  Google Scholar 

  10. Rubinstein H, Free actions of some finite groups on \(\mathbb{S}^3\), Math. Ann. 240 (1979) 165–175

    Article  MathSciNet  MATH  Google Scholar 

  11. Satya Deo and Tripathi H S, Compact Lie group actions on finitistic spaces, Topology 4 (1982) 393–399

    Article  MathSciNet  Google Scholar 

  12. Singh H K and Singh Tej B, On the cohomology of orbit space of free ℤ p -actions on lens space, Proc. Indian Acad. Sci. (Math. Sci.) 117 (2007) 287–292

    Article  MathSciNet  MATH  Google Scholar 

  13. Singh H K and Singh Tej B, Fixed point free involutions on cohomology projective spaces, Indian J. Pure Appl. Math. 39(3) (2008) 285–291

    MathSciNet  Google Scholar 

  14. Tao Y, On fixed point free involutions on \(\mathbb{S}^1\times \mathbb{S}^2\), Osaka J. Math. 14 (1962) 145–152

    MATH  Google Scholar 

  15. Wolf J, Spaces of constant curvature (McGraw-Hill) (1967)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HEMANT KUMAR SINGH.

Rights and permissions

Reprints and permissions

About this article

Cite this article

SINGH, H.K., SINGH, T.B. The cohomology of orbit spaces of certain free circle group actions. Proc Math Sci 122, 79–86 (2012). https://doi.org/10.1007/s12044-012-0056-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12044-012-0056-9

Keywords

Navigation