Skip to main content
Log in

Approximation of quantum Lévy processes by quantum random walks

  • Published:
Proceedings Mathematical Sciences Aims and scope Submit manuscript

Abstract

Every quantum Lévy process with a bounded stochastic generator is shown to arise as a strong limit of a family of suitably scaled quantum random walks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Accardi L, Schürmann M and von Waldenfels W, Quantum independent increment processes on superalgebras, Math. Z. 198(4) (1988) 451–477

    Article  MATH  MathSciNet  Google Scholar 

  2. Attal S and Pautrat Y, From repeated to continuous quantum interactions, Ann. Henri Poincaré 7(1) (2006) 59–104

    Article  MATH  MathSciNet  Google Scholar 

  3. Belton A, Random-walk approximation to vacuum cocycles, preprint available at #math.OA/0702700

  4. Biane P, Quantum random walk on the dual of SU(n), Probab. Th. Rel. Fields 89 (1991) 117–129

    Article  MATH  MathSciNet  Google Scholar 

  5. Biane P, Équation de Choquet-Deny sur le dual d’un groupe compact, Probab. Th. Rel. Fields 94 (1992) 39–51

    Article  MATH  MathSciNet  Google Scholar 

  6. Biane P, Théorème de Ney-Spitzer sur le dual de SU(2), Trans. Amer. Math. Soc. 345 (1994) 179–194

    Article  MATH  MathSciNet  Google Scholar 

  7. Collins B, Martin boundary theory of some quantum random walks, Ann. Inst. H. Poincaré Probab. Statist. 40(3) (2004) 367–384

    MATH  Google Scholar 

  8. Franz U, Lévy processes on quantum groups and dual groups, in Vol. II: Structure of Quantum Lévy Processes, Classical Probability and Physics (eds) U Franz and M Schürmann, Lecture Notes in Mathematics 1865 (Heidelberg: Springer-Verlag) (2006)

    Google Scholar 

  9. Franz U and Gohm R, Random Walks on Finite Quantum Groups, in Quantum Independent Increment Processes, Vol. II: Structure of Quantum Lévy Processes, Classical Probability and Physics (eds) U Franz and M Schürmann, Lecture Notes in Mathematics 1866 (Heidelberg: Springer-Verlag) (2006)

    Google Scholar 

  10. Franz U and Schott R, Stochastic Processes and Operator Calculus on Quantum Groups, Mathematics and its Applications 490 (Dordrecht: Kluwer) (1999)

    MATH  Google Scholar 

  11. Heyer H, Probability Measures on Locally Compact Groups (Berlin: Springer-Verlag) (1977)

    MATH  Google Scholar 

  12. Izumi M, Non-commutative Poisson boundaries and compact quantum group actions, Adv. Math. 169(1) (2002) 1–57

    Article  MATH  MathSciNet  Google Scholar 

  13. Kloeden P E and Platen E, Numerical solution of stochastic differential equations, Applications of Mathematics (New York) 23 (Berlin: Springer-Verlag) (1992)

    MATH  Google Scholar 

  14. Lindsay J M, Quantum stochastic analysis — an introduction, in Quantum Independent Increment Processes, Vol. I: From Classical Probability to Quantum Stochastics (eds) U Franz and M Schürmann, Lecture Notes in Mathematics 1865 (Heidelberg: Springer-Verlag) (2005)

    Google Scholar 

  15. Lindsay J M and Parthasarathy K R, The passage from random walk to diffusion in quantum probability. II., Sankhyā Ser. A50(2) (1988) 151–170

    MathSciNet  Google Scholar 

  16. Lindsay J M and Skalski A G, Quantum stochastic convolution cocycles—algebraic and C*-algebraic, Banach Center Publ. 73 (2006) 313–324

    Article  MathSciNet  Google Scholar 

  17. Lindsay J M and Skalski A G, Quantum stochastic convolution cocycles II, Comm. Math. Phys. 280(3) (2008) 575–610

    Article  MATH  MathSciNet  Google Scholar 

  18. Lindsay J M and Skalski A G, Quantum stochastic convolution cocycles III, in preparation

  19. Neshveyev S and Tuset L, The Martin boundary of a discrete quantum group, J. Reine Angew. Math. 568 (2004) 23–70

    MATH  MathSciNet  Google Scholar 

  20. Sahu L, Quantum randomwalks and their convergence, Proc. Indian Acad. Sci. (Math. Sci.), to appear (preprint available at #math.OA/0505438)

  21. Schürmann M, White Noise on Bialgebras, Lecture Notes in Mathematics 1544 (Heidelberg: Springer) (1993)

    MATH  Google Scholar 

  22. Sinha K, Quantum random walk revisited, Banach Center Publ. 73 (2006) 377–390

    Google Scholar 

  23. Skalski A, Quantum stochastic convolution cocycles, PhD thesis (University of Nottingham) (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Franz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franz, U., Skalski, A. Approximation of quantum Lévy processes by quantum random walks. Proc Math Sci 118, 281–288 (2008). https://doi.org/10.1007/s12044-008-0020-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12044-008-0020-x

Keywords

Navigation