Skip to main content
Log in

Beta decay of 125Sb and level structures in 125Te

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The decay of 2.76y 125Sb to levels of 125Te has been studied using an HPGe detector for gamma-ray and a mini orange electron spectrometer for conversion electron measurements. We identify 38 transitions in this decay, including 13 gamma rays and 4 conversion electron lines being reported for the first time. New results also include E1 multipolarity assignments to 3 newly observed transitions and M-shell conversion coefficient for the 109 keV M4 transition. A revised 125Te level scheme is constructed using Ritz combination principle. While confirming the existence of 10 well established levels below 700 keV excitation, we introduce 3 other levels at 402.0, 538.6 and 652.9 keV. Interpretation of the observed levels in terms of various theoretical approaches is briefly discussed. The newly introduced 538.6 keV (1/2+) and 652.9 keV (3/2+) levels are seen as the two missing members of the (s 1/2 ⊗ 2+) and (d 3/2 ⊗ 2+) sextuplet in the quasiparticle-phonon coupling scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J Katakura, M Oshima, K Kitao and H Iimura, Nucl. Data Sheets 70, 217 (1993)

    Article  ADS  Google Scholar 

  2. R B Firestone and V S Shirley (eds), Table of Isotopes, 8th ed. (John Wiley and Sons, Inc., New York, 1996)

    Google Scholar 

  3. G Friedlander, M Goldhaber and G Scharff-Goldhaber, Phys. Rev. 74, 981 (1948)

    Article  ADS  Google Scholar 

  4. R S Narcisi, A.E.C.U. Report 4336 (1958)

  5. G Chandra and V R Pandharipande, Nucl. Phys. 46, 119 (1963)

    Article  Google Scholar 

  6. K C Mann, F A Payne and R P Chaturvedi, Can. J. Phys. 42, 1700 (1964) and references therein

    Google Scholar 

  7. E P Mazets and Y V Sergeenkov, Izv. Akad. Nauk SSSR. Ser. Fis. 30, 1185 (1966); Bull Acad. Sci. USSR. Phys. Ser. 30, 1237 (1967)

    Google Scholar 

  8. N J Stone, R B Frankel and D A Shirley, Phys. Rev. 172, 1243 (1968)

    Article  ADS  Google Scholar 

  9. T Inamura, J. Phys. Soc. Jpn. 24, 1 (1968)

    Article  ADS  Google Scholar 

  10. G Ardisson, K Johansson and E Karlson, Nucl. Phys. A154, 369 (1970)

    ADS  Google Scholar 

  11. T S Nagpal and R E Gaucher, Can. J. Phys. 48, 2978 (1970)

    ADS  Google Scholar 

  12. J B Gupta, N C Singhal and J H Hamilton, Z. Phys. 261, 137 (1973)

    Article  ADS  Google Scholar 

  13. W B Walters and R A Meyer, Phys. Rev. C14, 1925 (1976)

    ADS  Google Scholar 

  14. R J Gehrke, R G Helmer and R C Greenwood, Nucl. Instrum. Methods 147, 405 (1977)

    Article  ADS  Google Scholar 

  15. R Prasad, Czech. J. Phys. B29, 737 (1979)

    Article  ADS  Google Scholar 

  16. K Singh and H S Sahota, Indian J. Pure Appl. Phys. 21, 19 (1983)

    Google Scholar 

  17. Y Iwata, M Yasuhara, K Maeda and Y Yoshizawa, Nucl. Instrum. Methods 219, 123 (1984)

    Article  Google Scholar 

  18. L Longoria-Gandara, M U Rajput and T D Mac Mahon, Nucl. Instrum. Methods A286, 529 (1990)

    ADS  Google Scholar 

  19. R G Helmer, Appl. Radiat. Isot. 41, 75 (1990)

    Google Scholar 

  20. D Smith, D H Woods, S A Woods, J L Makepeace, R E Mercer and C W A Downey, Nucl. Instrum. Methods A312, 353 (1992)

    ADS  Google Scholar 

  21. N I Fawwaz and N M Stewart, J. Phys. G19, 113 (1993)

    ADS  Google Scholar 

  22. J Goswamy, B Chand, D Mehta, N Singh and P N Trehan, Appl. Radiat. Isot. 42, 1025 (1991)

    Article  Google Scholar 

  23. A Kerek, J Kownacki and A Marelius, Nucl. Phys. A194, 64 (1972)

    ADS  Google Scholar 

  24. J Barrette, M Barrette, R Haroutunian, G Lamoureux, S Monaro and S Markiza, Phys. Rev. C11, 282 (1975)

    ADS  Google Scholar 

  25. M A G Fernandes and M N Rao, J. Phys. G3, 1397 (1977)

    ADS  Google Scholar 

  26. T Rodland, J S Vaagen and J R Lien, Nucl. Phys. A338, 13 (1980)

    ADS  Google Scholar 

  27. T Rodland, J R Lien, J S Vaagen, G Lovhoiden and C Ellegaard, Phys. Scr. 29, 529 (1984)

    Article  ADS  Google Scholar 

  28. V Bondarenko, J Honzatko and I Tomandl, Z. Phys. A354, 235 (1996)

    ADS  Google Scholar 

  29. A deShalit, Phys. Rev. 122, 1500 (1961)

    Article  ADS  Google Scholar 

  30. L S Kisslinger and R A Sorensen, Rev. Mod. Phys. 35, 74 (1963)

    Article  Google Scholar 

  31. A Kuriyama, T Marumori and K Matsuyanagi, Prog. Theor. Phys. 58, 53 (1975)

    Google Scholar 

  32. S Sen, J. Phys. G1, 286 (1975)

    ADS  Google Scholar 

  33. H Dias and L Losano, Phys. Rev. C50, 1377 (1994)

    ADS  Google Scholar 

  34. C A P Ceneviva, L Losano and H Dias, Int. J. Mod. Phys. E4, 419 (1995)

    ADS  Google Scholar 

  35. X-ray and gamma-ray standards for detector calibration”, IAEA Coordinated Research Programme Report No IAEA-TECDOC-619 (1991)

  36. M Sainath, K Venkataramaniah and P C Sood, Phys. Rev. C56, 2468 (1997)

    ADS  Google Scholar 

  37. M Sainath and K Venkataramaniah, Nuovo Cimento A111, 223 (1998)

    ADS  Google Scholar 

  38. M Sainath, K Venkataramaniah and P C Sood, Phys. Rev. C58, 3730 (1998)

    ADS  Google Scholar 

  39. V Petkov and N Bakaltchev, J. Appl. Cryst. 23, 138 (1990)

    Article  Google Scholar 

  40. R S Hager and E C Seltzer, Nucl. Data Sheets A4, 1 (1968)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sainath, M., Venkataramaniah, K. & Sood, P.C. Beta decay of 125Sb and level structures in 125Te. Pramana - J Phys 53, 289–305 (1999). https://doi.org/10.1007/s12043-999-0129-1

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-999-0129-1

Keywords

PACS Nos

Navigation