Skip to main content
Log in

Relative wavefunctions, vertex functions and coupling constants for the virtual decay of 4He

  • Research Articles
  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The d + d, t + p and h + n relative wavefunctions and their asymptotic normalizations are considered in the framework of the generator coordinate method (GCM) and compared with ATMS (amalgamation of two-body correlation into multiple scattering processes) method which used the realistic Reid soft core interaction. The asymptotic normalization of relative wavefunctions provide various coupling constants, the cluster probability amplitude (the so-called Z 1/2-factor) and matter RMS radii. These wavefunctions are also used to obtain 4He − dd, 4He − tp and 4He − hn vertex functions in the virtual decay of 4He. The extrapolation of vertex functions for negative values of q 2 upto the corresponding poles provide the vertex constants which are comparable with other estimates. It is noticed that in GCM the coupling constants C 2 for 4He − dd vertex is less than 2 as has been obtained in the forward dispersion relation technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R Blankenbecler, M L Goldberger and F R Halpern, Nucl. Phys. 12, 629 (1959)

    Article  MATH  Google Scholar 

  2. L S Shapiro, Theory of direct nuclear reactions (Moscow, Atomizdat, 1963)

    Google Scholar 

  3. Y E Kim and A Tubis, Annu. Rev. Nucl. Sci. 24, 69 (1974)

    Article  ADS  Google Scholar 

  4. M P Locher and T Mizutani, Phys. Rep. C46, 43 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  5. Y Akaishi, Cluster model and other topics (Singapore, World Scientific, 1986) p. 261

    Google Scholar 

  6. D R Tilley, H R Weller and G M Hale, Nucl. Phys. A541, 1 (1992)

    ADS  Google Scholar 

  7. S Fiarman and W E Meyerhof, Nucl. Phys. A206, 1 (1973)

    ADS  Google Scholar 

  8. P Heiss, B Bauer, H Aulenkampad and H Stowe, Nucl. Phys. A286, 42 (1977)

    ADS  Google Scholar 

  9. H M Hofmann, W Zahn and H Stowe, Nucl. Phys. A357, 139 (1981)

    ADS  Google Scholar 

  10. H Kanada, T Kaneko and Y C Tang, Phys. Rev. C34, 22 (1986)

    ADS  Google Scholar 

  11. D M Brink, In Proc. of the Int. School of physics, ‘Enrico Fermi’ Course 36, edited by C Bloch, p. 247 (New York, Academic, 1966)

    Google Scholar 

  12. H Horiuchi, Prog. Theor. Phys. (suppl.) 62, 1 (1977)

    Google Scholar 

  13. V K Sharma, in Developments of nuclear cluster dynamics (Singapore, World Scientific, 1989) p. 50

    Google Scholar 

  14. B K Chikara, Ph.D. Thesis, University of Meerut (1993)

  15. H Morita, Y Akaishi and H Tanaka, Prog. Theor. Phys. 79, 863 (1988)

    Article  ADS  Google Scholar 

  16. M Sakai, I Shimodaya, Y Akaishi, J Hiura and M Tanaka, Prog. Theor. Phys. (Suppl.) 56, 32 (1974)

    Google Scholar 

  17. L P Kok and A S Rinat, Nucl. Phys. A156, 593 (1970)

    ADS  Google Scholar 

  18. A S Rinat, L P Kok and M Stingl, Nucl. Phys. A190, 328 (1972)

    ADS  Google Scholar 

  19. L J B Goldfarb, J A Gonzalez and A C Phillips, Nucl. Phys. A209, 77 (1973)

    ADS  Google Scholar 

  20. L J B Goldfarb and E Parry, Nucl. Phys. A116, 289 (1968)

    ADS  Google Scholar 

  21. A N Mitra and V K Sharma, in Few body dynamics edited by A N Mitra, L Slaus, V S Bhasin and V K Gupta (Amsterdam: North-Holland, 1976)

    Google Scholar 

  22. V K Sharma, Pramana — J. Phys. 51, 733 (1998)

    ADS  Google Scholar 

  23. V S Bhasin and A N Mitra, Phys. Rev. Letts. 40, 1130 (1978)

    Article  ADS  Google Scholar 

  24. A N Mitra, Nucl. Phys. 32, 529 (1962)

    Article  MATH  Google Scholar 

  25. A N Mitra, in Advances in nuclear physics edited by M Baranger and E Vogt, vol. 3

  26. D F Hebbard and B A Robson, Nucl. Phys. 42, 563 (1963)

    Article  MATH  Google Scholar 

  27. M Abramowitz and I A Stegun, Handbook of mathematical function (New York, Dover, 1965)

    Google Scholar 

  28. A B Volkov, Nucl. Phys. 74, 33 (1964)

    Google Scholar 

  29. G Bertsch, J Borysowicz, H McManus and W G Love, Nucl. Phys. A284, 399 (1977)

    ADS  Google Scholar 

  30. In [16] (see eq. (3)) the vertex function is given with negative sign. Here we consider the positive sign as it will not affect the estimates of G 2 reported in table 1 and also consistent with the prescription given by Mitra and Sharma [18], to be discussed in §3.1.

  31. S Dubnicka and O V Dumbrajs, Phys. Lett. B57, 321 (1975)

    Google Scholar 

  32. A G Baryshnikov, L D Blokhinstev and I M Narodetsky, Nucl. Phys. A272, 327 (1976)

    ADS  Google Scholar 

  33. M P Bornand, G R Plattnev, R D Viollier and K Alder, Nucl. Phys. A294, 492 (1978)

    ADS  Google Scholar 

  34. T K Lim, Phys. Rev. C14, 1243 (1976)

    ADS  Google Scholar 

  35. A G Baryshnikov, L D Blokhinstev, A N Safronov and V V Turovtsev, Nucl. Phys. A224, 61 (1974)

    ADS  Google Scholar 

  36. G R Plattner, R D Viollier, D Trautmann and K Alders, Nucl. Phys. A206, 513 (1973)

    ADS  Google Scholar 

  37. R Shyam, R G Lovas, K F Pal, V K Sharma and M A Nagarajan, J. Phys. G: Nucl. Phys. 11, 1199 (1985)

    Article  ADS  Google Scholar 

  38. N M Clarke, J. Phys. G: Nucl. Phys. and Part. Phys. 18, 917 (1992)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, V., Chikara, B. Relative wavefunctions, vertex functions and coupling constants for the virtual decay of 4He. Pramana - J Phys 53, 707–725 (1999). https://doi.org/10.1007/s12043-999-0106-8

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-999-0106-8

Keywords

PACS No

Navigation