Skip to main content
Log in

Anisotropic RKKY interaction in doped monolayer germanene: spin–orbit coupling effects

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We study exchange interaction between two magnetic impurities, i.e. the Ruderman–Kittel–Kasuya–Yosida (RKKY), in doped germanene layer by directly computing Green’s function within the full band method. Kane–Mele model Hamiltonian in the presence of spin–orbit coupling and longitudinal magnetic field has been applied to describe electron dynamics. The behaviour of RKKY interaction as a function of distance between the localised moments has been analysed for different values of magnetic field and spin–orbit coupling strength for electrons. Also, the effects of electron doping as the variation of chemical potential on behaviours of RKKY interaction have been investigated. It has been shown that a magnetic field along the z-axis mediates an anisotropic interaction which corresponds to an XXZ model interaction between two magnetic moments. The exchange interaction along the arbitrary direction between two magnetic moments has been obtained using the static spin susceptibilities of doped germanene layer in the presence of spin–orbit coupling. The effects of magnetic field, electron doping and spin–orbit coupling on the dependence of exchange interaction on distance between moments are investigated by calculating the correlation function of the spin density operators. Our results show that the electron doping impacts the spatial behaviour of RKKY interaction. Moreover, spin–orbit coupling effects on both longitudinal and transverse RKKY interactions have been investigated for doped germanene monolayer. Finally, we have studied in detail the temperature dependence of RKKY interactions for various amounts of spin–orbit coupling strengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. K S Novoselov, A K Geim, S V Morosov, D Jiang, Y Zhang, S V Dubonos, I V Grigorieva and A A Firsov, Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  2. K S Novoselov, A K Geim, S V Morosov, D Jiang, M I Katsnelson, I V Grigorieva, S V Dubonos and A A Firsov, Nature 438, 197 (2005)

    Article  ADS  Google Scholar 

  3. A H C Neto, F Guinea, N M R Peres, K S Novoselov and A K Geim, Rev. Mod. Phys. 81, 109 (2009)

  4. Y Zhang, T-W Tan, H L Stormer and P Kim, Nature 438, 201 (2005)

    Article  ADS  Google Scholar 

  5. X-L Wang, S X Dou and C Zhang, NPG Asia Mater. 2, 31 (2010)

    Article  Google Scholar 

  6. R Chegel and S Behzad, Sci. Rep. 10, 704 (2020)

    Article  ADS  Google Scholar 

  7. S Cahangirov, M Topsakal, E Akturk, H Sahin and S Ciraci, Phys. Rev. Lett. 102, 236804 (2009)

    Article  ADS  Google Scholar 

  8. C C Liu, W Feng and Y Yao, Phys. Rev. Lett. 107, 076802 (2011)

    Article  ADS  Google Scholar 

  9. J E Padilha and R B Pontes, The J. Chem. C 119, 3818 (2015)

    Google Scholar 

  10. S Chowdhury and D Jana, Rep. Prog. Phys. 79, 126501 (2016)

    Article  ADS  Google Scholar 

  11. T P Kaloni, The J. Phys. Chem. C 118, 25200 (2014)

    Article  Google Scholar 

  12. C-C Liu, H Jiang and Y Yao, Phys. Rev. B 84, 195430 (2011)

    Article  ADS  Google Scholar 

  13. X-S Ye et al, RSC Adv. 4, 21216 (2016)

    Article  ADS  Google Scholar 

  14. Z Qiao et al, Phys. Rev. B 82, 161414 (R) (2010)

  15. W-K Tse et al, Phys. Rev. B 83, 155447 (2011)

  16. C L Kane and E J Mele, Phys. Rev. Lett. 95, 146802 (2005)

    Article  ADS  Google Scholar 

  17. F D M Haldane, Phys. Rev. Lett. 61, 2015 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  18. E H Hwang and S Das Sarma, Phys. Rev. B 80, 075417 (2009)

    Article  ADS  Google Scholar 

  19. R G Mani, J H Smet, K von Klitzing, V Narayanamurti, W B Johnson and V Umansky, Nature (London) 420, 646 (2002)

    Article  ADS  Google Scholar 

  20. M A Ruderman and C Kittel, Phys. Rev. 96, 99 (1954)

    Article  ADS  Google Scholar 

  21. T Kasuya, Prog. Theor. Phys. 16, 45 (1956)

    Article  ADS  Google Scholar 

  22. K Yosida, Phys. Rev. 106, 893 (1957)

    Article  ADS  Google Scholar 

  23. B Fischer and M W Klein, Phys. Rev. B 11, 2025 (1975)

    Article  ADS  Google Scholar 

  24. V I Litvinov and V K Dugaev, Phys. Rev. B 58, 3584 (1998)

    Article  ADS  Google Scholar 

  25. L Wojtczak, Acta Phys. Polon. A 36, 585 (1969)

    Google Scholar 

  26. S Mi, S-H Yuan and P Lyu, J. Appl. Phys. 109, 083931 (2011)

    Article  ADS  Google Scholar 

  27. S Saremi, Phys. Rev. B 76, 184430 (2007)

    Article  ADS  Google Scholar 

  28. L Brey, H A Fertig and S Das Sarma, Phys. Rev. Lett. 99, 116802 (2007)

    Article  ADS  Google Scholar 

  29. A M Black-Schaffer, Phys. Rev. B 81, 2056416 (2010)

    Google Scholar 

  30. S R Power, F S M Guimaraes, A T Costa, R B Muniz and M S Ferreira, Phys. Rev. B 85, 195411 (2012)

    Article  ADS  Google Scholar 

  31. E Kogan, Phys. Rev. B 84, 115119 (2011)

  32. M Sherafati and S Satpathy, Phys. Rev. B 83, 165425 (2011)

  33. G Zarand and B Janko, Phys. Rev. Lett. 89, 047201 (2002)

    Article  ADS  Google Scholar 

  34. G D Mahan, Many particle physics (Plenum Press, New York, 1993), Vol. 2, Ch. 4, Sec. 5, p. 135

  35. F Azizi and H Rezania, Physica E 128, 114612 (2021)

  36. Y Soori and H Rezania, Physica E 127, 114458 (2021)

  37. F Azizi and H Rezania, Synth. Metals 59, 38 (2021)

    Google Scholar 

  38. H Imamura, P Bruno and Y Utsumi, Phys. Rev. B 69, 121303(R) (2004)

    Article  ADS  Google Scholar 

  39. X Li, S Wu, S Zhou and Z Zhu, Nanoscale Res. Lett. 9, 110 (2014)

    Article  ADS  Google Scholar 

  40. A V Sologubenko et al, Phys. Rev. Lett. 98, 107201 (2007)

    Article  ADS  Google Scholar 

  41. Y Yan, C-Q Wu and B Li, Phys. Rev. B 79, 014207 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Rezania.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azizi, F., Rezania, H. Anisotropic RKKY interaction in doped monolayer germanene: spin–orbit coupling effects. Pramana - J Phys 98, 72 (2024). https://doi.org/10.1007/s12043-024-02763-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-024-02763-w

Keywords

PACS Nos

Navigation