Skip to main content
Log in

The optimal values of Greenwald density limit and plasma safety factor in inductive and non-inductive operation modes

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The spherical tokamak (ST) operates in a steady state with a high fusion gain. The 0-dimensional power balance model, including radiation losses to determine Q value as an inductive fusion gain, and the current balance model for determining \(Q_{\textrm{CD}}\) as a non-inductive fusion gain, is used to investigate the viability of D–\(^{3}\)He fuel for a steady-state operation. The spherical tokamak’s geometry, including the magnetic field \(B_{t}\) and \(\beta _{\textrm{th}}\) as a ratio of its kinetic pressure to the magnetic pressure, is used to analyse the impact of the confinement enhancement factor \(H_{y2}\) and the impurity density fraction \(f_{\textrm{I}}\) on \(Q_{\textrm{CD}}\). By comparing the obtained values with the device data, plasma characteristics, such as the safety factor \(q_{\textrm{I}}\) and Greenwald density limit \(N_{\textrm{G}}\) are examined to determine the optimum density limit and safety factor for an assurance about \(Q\approx Q_{\textrm{CD}}\) as the aim of steady-state operation. A comparison with ARIES-III performance is also made. The overall plant power balance equation is included. Furthermore, the desirable plant thermal efficiency value \(\eta _{\textrm{th}}\) and normalised beta value \(\beta _{N}\) for producing net electric power \(P_{\textrm{NET}}>\) 1 GW for the ST are achieved. Therefore, ST’s capability of having a lower aspect ratio A and higher elongation \(\kappa _{s}\) than ARIES-III in generating more significant fusion power with lower \(H_{y2}\) and higher energy confinement time \(\tau _{E}\) is approved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J J Chapman, in: Advanced fusion reactors for space propulsion and power systems, 38th International Conference on Plasma Science, 2011)

  2. G L Kulcinski and J F Santarius, Nature 396, 724 (1998)

    Article  ADS  Google Scholar 

  3. G De Temmerman, Joule 5, 1312 (2021)

    Article  Google Scholar 

  4. O Mitarai, H Matsuura, T Omori, Sh Kajimoto, T Takahashi, Sh Koike and K Nakamura, Fusion Eng. Des. 136, 82 (2018)

    Article  Google Scholar 

  5. Sh Chen and D Bernard, Chinese J. Phys. 66, 135 (2020)

    Google Scholar 

  6. L El-Guebaly and M Zucchetti, Fusion Eng. Des. 82, 351 (2007)

    Article  Google Scholar 

  7. L J Wittenberg, J F Santarius and G L Kulcinski, Fusion Technol. 10, 167 (1986)

    Article  ADS  Google Scholar 

  8. S V Ryzhkov, AIP Conf. Proc. 2318, 090008 (2021)

    Google Scholar 

  9. S Meschini, M Zucchetti and E Pagliuca, Fusion Sci. Technol. 77, 784 (2021)

    Article  ADS  Google Scholar 

  10. M Zucchetti et al, Fusion Eng. Des. 88, 652 (2013)

    Article  Google Scholar 

  11. S M Motevalli and F Fadaei, Pramana – J. Phys. 86, 837 (2016)

    Google Scholar 

  12. J F Santarius, G L Kulcinski, L El-Guebaly and H Y Khater, J. Fusion Energy 17, 33 (1998)

    Article  ADS  Google Scholar 

  13. E Mazzucato, Fusion Sci. Technol. 77, 173 (2021)

    Article  ADS  Google Scholar 

  14. Y K Peng, J D Galambos and P C Shipe, Fusion Technol. 21, 1729 (1992)

    Article  ADS  Google Scholar 

  15. A Y Chirkov, J. Fusion Energy 32, 208 (2013)

    Article  ADS  Google Scholar 

  16. S M Motevalli and F Fadaei, Z. Naturforsch. A: Phys. Sci. 70, 79 (2015)

    Article  ADS  Google Scholar 

  17. A Sykes et al, Fusion Sci. Technol. 68, 237 (2015)

    Article  ADS  Google Scholar 

  18. F Fadaei and S M Motevalli, Moscow Univ. Phys. Bull. 72, 535 (2017)

    Article  ADS  Google Scholar 

  19. M Romanelli and F P Orsitto, Plasma Phys. Control. Fusion 63, 125004 (2021)

    Article  ADS  Google Scholar 

  20. O Mitarai, R Yoshino and K Ushigusa, Nucl. Fusion 42, 1257 (2002)

    Article  ADS  Google Scholar 

  21. S Shiraiwa et al, Phys. Rev. Lett. 92, 035001 (2004)

    Article  ADS  Google Scholar 

  22. O Mitarai et al, J. Plasma Fusion Res. 80, 549 (2004)

    Article  ADS  Google Scholar 

  23. F Sharifi, S M Motevalli and F Fadaei, Phys. Scr. 96, 095601 (2021)

    Article  ADS  Google Scholar 

  24. Y Nagayama and Y Tomita, IEEJ Trans. Fundam. Mater. 125, 947 (2005)

    Google Scholar 

  25. O Mitarai, H Matsuura and Y Tomita, Fusion Eng. Des. 81, 2719 (2006)

    Article  Google Scholar 

  26. K Tobita et al, Nucl. Fusion 49, 075029 (2009)

    Article  ADS  Google Scholar 

  27. M Kikuchi and M Azumi, Rev. Mod. Phys. 84, 1807 (2012)

    Article  ADS  Google Scholar 

  28. J Ongena, R Koch, R Wolf and H Zohm, Nat. Phys. 12, 398 (2016)

    Article  Google Scholar 

  29. M Kikuchi, Nucl. Fusion 30, 265 (1990)

    Article  Google Scholar 

  30. B Wan et al, Chin. Phys. Lett. 37, 045202 (2020)

    Article  ADS  Google Scholar 

  31. HR Wilson et al, Nucl. Fusion 44, 917 (2004)

    Article  ADS  Google Scholar 

  32. M C R Andrade and G O Ludwig, Plasma Phys. Control. Fusion 50, 065001 (2008)

    Article  ADS  Google Scholar 

  33. R D Stambaugh, V S Chan, R L Miller and M J Schaffer, Fusion Technol. 33, 1 (1998)

    Article  ADS  Google Scholar 

  34. Y Nagayama, in: Burning criteria for D-3He ST Reactor, 21st IEEE/NPS Symposium on Fusion Engineering (SOFE 05), 2005

  35. CT Holcomb et al, Phys. Plasma 19, 032501 (2012)

    Article  ADS  Google Scholar 

  36. J R Ferron et al, Nucl. Fusion 51, 063026 (2011)

    Article  ADS  Google Scholar 

  37. T C Luce, Phys. Plasma 18, 030501 (2011)

    Article  ADS  Google Scholar 

  38. D Maisonnier, I Cook, S Pierre and B Lorenzo, Fusion Eng. Des. 81, 1123 (2006)

    Article  Google Scholar 

  39. F Najmabadi et al, Fusion Eng. Des. 80, 3 (2006)

    Article  Google Scholar 

  40. A Sykes et al, IEEE Trans. Plasma Sci. 42, 482 (2014)

    Article  ADS  Google Scholar 

  41. M Valovič et al, Nucl. Fusion 49, 075016 (2009)

    Article  ADS  Google Scholar 

  42. SM Kaye et al, Nucl. Fusion 46, 848 (2006)

    Article  ADS  Google Scholar 

  43. C Gormezano et al, Nucl. Fusion 47, S285 (2007)

    Article  Google Scholar 

  44. T C Luce, Fusion Sci. Technol. 48, 1212 (2005)

    Article  ADS  Google Scholar 

  45. A G Peeters, Plasma Phys. Control. Fusion 42, 12B, B231 (2000)

    Article  ADS  Google Scholar 

  46. C C Petty et al, Nucl. Fusion 56, 016016 (2015)

    Article  ADS  Google Scholar 

  47. R L Miller et al, General Atomics Report (1996)

  48. M Ono and R Kaita, Phys. Plasma 22, 040501 (2015)

    Article  ADS  Google Scholar 

  49. S C Jardin et al, Fusion Sci. Technol. 43, 161 (2003)

    Article  ADS  Google Scholar 

  50. H Zohm, J. Fusion Energy 38, 3 (2019)

    Article  Google Scholar 

  51. E Iter et al., Nucl. Fusion 39, 2175 (1999)

    Article  ADS  Google Scholar 

  52. J R McNally, Nuclear Technol.-Fusion 2, 9 (1982)

  53. R J Goldston and P H Rutherford, in: Introduction to plasma physics (CRC Press, 1995)

  54. O Mitarai, Nuclear Reactors, Nuclear Fusion and Fusion Engineering, 405 (2009)

  55. C G Bathke et al, The 14th IEEE/NPSS Symposium on Fusion Engineering 1, 219 (1991)

  56. R J Buttery et al, Nucl. Fusion 61, 046028 (2021)

    Article  ADS  Google Scholar 

  57. A E Costley, Nucl. Fusion 56, 066003 (2016)

    Article  ADS  Google Scholar 

  58. S M Motevalli and M Safari, Fusion Eng. Des. 112, 53 (2016)

    Article  Google Scholar 

  59. M Shubov, arXiv preprint, arXiv:2104.06251 (2021)

  60. R J Akers et al, Nucl. Fusion 40, 1223 (2000)

    Article  ADS  Google Scholar 

  61. B Shi, Plasma Sci. Technol. 7, 2767 (2005)

    Article  ADS  Google Scholar 

  62. A E Costley, Philos. Trans. Roy. Soc. A 377, 20170439 (2019)

    Article  ADS  Google Scholar 

  63. J E Menard, Philos. Trans. Roy. Soc. A 377, 20170440 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors take great pleasure in thanking the referee for his/her several suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S M Motevalli.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharifi, F., Motevalli, S.M. & Fadaei, F. The optimal values of Greenwald density limit and plasma safety factor in inductive and non-inductive operation modes. Pramana - J Phys 98, 63 (2024). https://doi.org/10.1007/s12043-024-02751-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-024-02751-0

Keywords

PACS Nos.

Navigation