Skip to main content
Log in

Analysis of hybrid nanoparticles shape factor and thermal radiation effect on solidification in latent energy storage in a triplex chamber

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Researchers have made many efforts to store energy in forms that can be turned into required forms. Energy storage minimises the gap between supply and demand for energy while increasing energy systems’ effectiveness and dependability. Latent heat storage (LHS) can be used to store energy efficiently. This article explores the numerical analysis of the solidification procedure for latent heat thermal energy storage (LHTES) in a triplex chamber. TiO\(_2\)–Al\(_2\)O\(_3\) nanoparticles were used as hybrid nanoparticles and water was used as a phase change material (PCM). FlexPDE, a general-purpose scripted finite-element software, was used to discretise and solve the partial differential governing equations. The study investigated the impact of various factors on the contour of solid fraction, temperature distribution, average temperature, solid fraction diagram and the overall energy of the system. These factors encompassed the volume fraction of nanoparticles, the presence of fins, thermal radiation and the shape factor of nanoparticles. Moreover, the optimal values for the full solidification time (FST) were established using the response surface methodology (RSM). The findings indicate that full solidification time is optimised when the hybrid nanoparticle volume fraction is 0.048, thermal radiation is 0.777 and shape factor is 15.29.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. C Y Zhao, W Lu and Y Tian, Sol. Energy 84(8), 1402 (2010)

    Article  ADS  Google Scholar 

  2. M Rostamizadeh, M Khanlarkhani and S M Sadrameli, Energy Build. 49, 419 (2012)

    Article  Google Scholar 

  3. R Moradi, A Kianifar and S Wongwises, Exp. Therm. Fluid Sci. 89, 41 (2017)

    Article  Google Scholar 

  4. P Saikia, A S Azad and D Rakshit, Int. J. Therm. Sci. 126, 105 (2018)

    Article  Google Scholar 

  5. M Faghani, M J Hosseini and R Bahrampoury, Alex. Eng. J. 57(2), 577 (2018)

    Article  Google Scholar 

  6. W Lin, W Zhang, Z Ling, X Fang and Z Zhang, Appl. Therm. Eng. 178, 115630 (2020)

    Article  Google Scholar 

  7. A Sciacovelli, F Gagliardi and V Verda, Appl. Energy 137, 707 (2015)

    Article  ADS  Google Scholar 

  8. M M Joybari, F Haghighat, S Seddegh and A A Al-Abidi, Energy Convers. Manag. 152, 136 (2017)

    Article  Google Scholar 

  9. S Liu, H Peng, Z Hu, X Ling and J Huang, Int. J. Heat Mass Transf. 138, 667 (2019)

    Article  Google Scholar 

  10. J R Patel and M K Rathod, Heat Transf. – Asian Res. 48(2), 483 (2019)

    Article  Google Scholar 

  11. M Kirincic, A Trp and K Lenic, J. Energy Storage 42, 103085 (2021)

    Article  Google Scholar 

  12. M S Shafiq, M M Khan and M Irfan, Case Stud. Therm. Eng. 27, 101339 (2021)

    Article  Google Scholar 

  13. X Yang, F Xu, X Wang, J Guo and M J Li, Energy Built Environ. 4, 64 (2023)

    Google Scholar 

  14. S F Hosseinizadeh, A R Darzi and F L Tan, Int. J. Therm. Sci. 51, 77 (2012)

    Article  Google Scholar 

  15. S Y Wu, H Wang, S Xiao and D S Zhu, J. Therm. Anal. Calorim. 110(3), 1127 (2012)

    Article  Google Scholar 

  16. M Sheikholeslami and A Ghasemi, Int. J. Heat Mass Transf. 123, 418 (2018)

    Article  Google Scholar 

  17. Z Khan, Z A Khan and P Sewell, Int. J. Heat Mass Transf. 144, 118619 (2019)

    Article  Google Scholar 

  18. A Yadav and M K Shivhare, Nanoparticle-enhanced PCM for solar thermal energy storage, in: IEEE Advances in Science and Engineering Technology International Conferences (ASET) pp. 1–3 (2020)

  19. S M H Zadeh, S A M Mehryan, M Ghalambaz, M Ghodrat, J Young and A Chamkha, Energy 213, 118761 (2020)

    Article  Google Scholar 

  20. M E Moghaddam, M H S Abandani, K Hosseinzadeh, M B Shafii and D D Ganji, Theor. Appl. Mech. Lett. 12(2), 100332 (2022)

    Article  Google Scholar 

  21. K Hosseinzadeh, A Asadi, A R Mogharrebi, B Jafari, M R Hasani and D D Ganji, Alex. Eng. J. 60(1), 1967 (2021)

    Article  Google Scholar 

  22. K Hosseinzadeh, E Montazer, M B Shafii and A R D Ganji, J. Energy Storage 34, 102177 (2021)

    Article  Google Scholar 

  23. K Hosseinzadeh, S Faghiri, S Akbari, J R Kermani, B Jafari and M B Shafii, Int. J. Thermofluids 20, 100443 (2023)

    Article  Google Scholar 

  24. A Najafpour, K Hosseinzadeh, S Akbari, M Mahboobtosi, A A Ranjbar and D D Ganji, Chem. Eng. Processing-Process Intensification 194, 109567 (2023)

    Article  Google Scholar 

  25. M Mohammadi, K Hosseinzadeh and D D Ganji, Numerical analysis on the impact of axial grooves on vortex cooling behavior in gas turbine blade’s lead-ing edge, Proceedings of the Institution of MechanicalEngineers, Part E: Journal of Process Mechanical Engineering, 09544089231163113 (2023)

  26. M R Mardani, D D Ganji and K H Hosseinzadeh, J. Mol. Liq. 346, 117111 (2022)

    Article  Google Scholar 

  27. A Najafpour, K Hosseinzadeh, J R Kermani, A A Ranjbar and D D Ganji, J. Mol. Liq. 393, 123616 (2023)

    Article  Google Scholar 

  28. N Alipour, B Jafari and K Hosseinzadeh, Heliyon 9, e22257 (2023)

    Article  Google Scholar 

  29. M Mahboobtosi, K Hosseinzadeh and D D Ganji, Int. J. Thermofluids 20, 100507 (2023)

    Article  Google Scholar 

  30. M R Zangooee, K Hosseinzadeh and D D Ganji, Case Stud. Therm. Eng. 50, 103398 (2023)

    Google Scholar 

  31. K Hosseinzadeh, M Roshani, M A Attar, D D Ganji and M B Shafii, Heliyon 9(9), e20193 (2023)

    Article  Google Scholar 

  32. M R Moradi, K Hosseinzadeh, A Hasibi and D Domiri Ganji, https://doi.org/10.1080/10407790.2023.2241632 (2023)

  33. K Hosseinzadeh, S Akbari, S Faghiri and M B Shafii, Int. J. Thermofluids 18, 100337 (2023)

    Article  Google Scholar 

  34. K A R Ismail, C L F Alves and M S Modesto, Appl. Therm. Eng. 21(1), 53 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jahanfar Khaleghinia.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MansourSamaii, O., Khaleghinia, J., Mohammadi, M. et al. Analysis of hybrid nanoparticles shape factor and thermal radiation effect on solidification in latent energy storage in a triplex chamber. Pramana - J Phys 98, 78 (2024). https://doi.org/10.1007/s12043-024-02749-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-024-02749-8

Keywords

PACS No

Navigation